Skip to main content

Advertisement

Log in

Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery

  • Published:
Metallurgical and Materials Transactions E

Abstract

A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.B. Goodenough, Y.S. Kim, Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243–62 (2011)

    Article  Google Scholar 

  3. J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135, 1167–76 (2013)

    Article  Google Scholar 

  4. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, J. Power Sources 257, 421–43 (2014)

    Article  Google Scholar 

  5. N. Nitta, G. Yushin, Part. Part. Syst. Charact. 31, 317–36 (2014)

    Article  Google Scholar 

  6. P. Roy, S.K. Srivastava, J. Mater. Chem. A 3A, 2454–84 (2015)

    Article  Google Scholar 

  7. M. Winter, J.O. Besenhard, Electrochim. Acta 45, 31–50 (1999)

    Article  Google Scholar 

  8. A.R. Kamali, D.J. Fray, Rev. Adv. Mater. Sci. 27, 14–24 (2011)

    Google Scholar 

  9. J.J. Chen, Materials 6, 156–83 (2013)

    Article  Google Scholar 

  10. M. Zhang, T. Wang, G. Cao, Int. Mater. Rev. 60, 330–52 (2015)

    Article  Google Scholar 

  11. W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris, Nature 377, 687 (1995)

    Article  Google Scholar 

  12. W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 262, 161–66 (1996)

    Article  Google Scholar 

  13. W.K. Hsu, M. Terrones, H. Terrones, N. Grobert, A.I. Kirkland, J.P. Hare, K. Prassides, P.D. Townsend, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 284, 177–83 (1998)

    Article  Google Scholar 

  14. W.K. Hsu, J. Li, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, S. Trasobares, J.P. Hare, C.J. Pickett, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 301, 159–66 (1999)

    Article  Google Scholar 

  15. W.K. Hsu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, Y.Q. Zhu, W.Z. Li, R. Escudero, J.P. Hare, H.W. Kroto, D.R.M. Walton, Chem. Mater. 11, 1747–51 (1999)

    Article  Google Scholar 

  16. C. Schwandt, A.T. Dimitrov, D.J. Fray, J. Electroanal. Chem. 647, 150–58 (2010)

    Article  Google Scholar 

  17. A.R. Kamali, C. Schwandt, D.J. Fray, Mater. Charact. 62, 987–94 (2011)

    Article  Google Scholar 

  18. C. Schwandt, A.T. Dimitrov, D.J. Fray, Carbon 50, 1311–15 (2012)

    Article  Google Scholar 

  19. R. Das Gupta, C. Schwandt, D.J. Fray, Carbon 70, 142–48 (2014)

    Article  Google Scholar 

  20. Q. Xu, C. Schwandt, G.Z. Chen, D.J. Fray, J. Electroanal. Chem. 530, 16–22 (2002)

    Article  Google Scholar 

  21. Q. Xu, C. Schwandt, D.J. Fray, J. Electroanal. Chem. 562, 15–21 (2004)

    Article  Google Scholar 

  22. J. Sychev, N.V. Borisenko, G. Kaptay, Kh.B. Kushkhov, Russ. J. Electrochem. 41, 956–63 (2005)

    Article  Google Scholar 

  23. J. Sytchev, G. Kaptay, Electrochim. Acta 54, 6725–31 (2009)

    Article  Google Scholar 

  24. G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He, W.Z. Li, J. Electrochem. Soc. 146, 1696–1701 (1999)

    Article  Google Scholar 

  25. G.T. Wu, M.H. Chen, G.M. Zhu, J.K. You, Z.G. Lin, X.B. Zhang, J. Sol. State Electrochem. 7, 129–33 (2003)

    Article  Google Scholar 

  26. T.P. Kumar, R. Ramesh, Y.Y. Lin, G.T.K. Fey, Electrochem. Comm. 6, 520–25 (2004)

    Article  Google Scholar 

  27. M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M.G. Kim, Chem. Mater. 17, 1926–29 (2005)

    Article  Google Scholar 

  28. J. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19, 2336–40 (2007)

    Article  Google Scholar 

  29. B.K. Guo, J. Shu, K. Tang, Y. Bai, Z.X. Wang, L.Q. Chen, J. Power Sources 177, 205–10 (2008)

    Article  Google Scholar 

  30. Y.Q. Chang, H. Li, L. Wu, T.H. Lu, J. Power Sources 68, 187–90 (1997)

    Article  Google Scholar 

  31. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Béguin, Carbon 37, 61–69 (1999)

    Article  Google Scholar 

  32. E. Frackowiak, F. Béguin, Carbon 40, 1775–87 (2002)

    Article  Google Scholar 

  33. J.Y. Eom, H.S. Kwon, J. Liu, O. Zhou, Carbon 42, 2589–96 (2004)

    Article  Google Scholar 

  34. M. Inaba, T. Uno, A. Tasaka, J. Power Sources 146, 473–77 (2005)

    Article  Google Scholar 

  35. K. Wang, X.M. He, J.G. Ren, C.Y. Jiang, C.R. Wan, J. New Mater. Electrochem. Syst. 10, 167–70 (2007)

    Google Scholar 

  36. M.Y. Li, Y. Wang, C.L. Liu, C. Zhang, W.S. Dong, J. Electrochem. Soc. 159, A91–A97 (2012)

    Article  Google Scholar 

  37. R. Alcántara, P. Lavela, G.F. Ortiz, J.L. Tirado, E. Zhecheva, R. Stoyanova, J. Electrochem. Soc. 154, A964–70 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. I. Davidson and Dr. P. Whitfield for expert support during the experimental program at the National Research Laboratory, Ottawa, Canada. The study was funded by Electrovaya Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schwandt.

Additional information

Manuscript submitted July 31, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das Gupta, R., Schwandt, C. & Fray, D.J. Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery. Metallurgical and Materials Transactions E 4, 22–28 (2017). https://doi.org/10.1007/s40553-016-0103-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0103-z

Keywords

Navigation