Skip to main content

Tin-Based Anode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:
Nanotechnology for Lithium-Ion Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Tin and its compounds constitute a new class of high-capacity anode materials that can replace graphitic carbon in current lithium-ion batteries. In the case of the two most studied, tin metal and tin oxide, it was shown that the inevitable volume expansion during electrochemical alloying with lithium can be mitigated using many strategies including formation of nanofilms, nanoparticles, nanocomposites, and nanostructures. It was demonstrated that high reversible capacities can be obtained and this was highlighted by the successful commercialization of a lithium-ion battery with a Sn/Co/C nanocomposite (NexelionTM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nazri G-A, Pistoia G (2004) Lithium batteries: science and technology. Kluwer, Boston, 708 p

    Google Scholar 

  2. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151(6):A838–A842

    Article  CAS  Google Scholar 

  3. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19(17):2336–2340

    Article  CAS  Google Scholar 

  4. Brousse T, Crosnier O, Santos-Peña J, Sandu I, Fragnaud P, Schleich DM (2002) Recent progress in the development of tin-based negative electrodes for Li-ion batteries. In: Kumagai N, Komaba S (eds) Materials chemistry in lithium batteries. Research Signpost, Kerala

    Google Scholar 

  5. Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20(16):3169–3175

    Article  CAS  Google Scholar 

  6. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  CAS  Google Scholar 

  7. Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549

    Article  CAS  Google Scholar 

  8. Huggins RA (2009) Advanced batteries: materials science aspects. Springer, New York

    Google Scholar 

  9. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187

    Article  Google Scholar 

  10. Rao BML, Francis RW, Christopher HA (1977) Lithium-aluminum electrode. J Electrochem Soc 124(10):1490–1492

    Article  CAS  Google Scholar 

  11. Callister WD (2007) Materials science and engineering: an introduction, 7th edn. Wiley

    Google Scholar 

  12. CRC Handbook of Chemistry and Physics (2010–2011). CRC Press. http://www.hbcpnetbase.com. Accessed in January 2012

  13. Lewis RB, Timmons A, Mar RE, Dahn JR (2007) In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. J Electrochem Soc 154(3):A213–A216

    Article  CAS  Google Scholar 

  14. Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17(12):3297–3301

    Article  CAS  Google Scholar 

  15. Courtel FM, Bertin E, Saari D, Abu-Lebdeh Y, Davidson IJ (2010) Use of water soluble binders for nano-SnO2 and nano-SnO2/carbon composite anodes. In: The 15th international meeting on lithium batteries – IMLB 2010. ECS, Montreal, 27 June –2 July 2010

    Google Scholar 

  16. Chou S-L, Wang J-Z, Zhong C, Rahman MM, Liu H-K, Dou S-X (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54(28):7519–7524

    Article  CAS  Google Scholar 

  17. Courtney IA, Dahn JR (1997) Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J Electrochem Soc 144(9):2943–2948

    Article  CAS  Google Scholar 

  18. Ng SH, dos Santos DI, Chew SY, Wexler D, Wang J, Dou SX, Liu HK (2007) Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochem Commun 9(5):915–919

    Article  CAS  Google Scholar 

  19. Chen Y-C, Chen J-M, Huang Y-H, Lee Y-R, Shih HC (2007) Size effect of tin oxide nanoparticles on high capacity lithium battery anode materials. Surf CoatTechnol 202(4–7):1313–1318

    Article  CAS  Google Scholar 

  20. Wang Y, Su F, Lee JY, Zhao XS (2009) Crystalline carbon hollow spheres, crystalline carbon/SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage. Chem Mater 18(5):1347–1353

    Article  Google Scholar 

  21. Subramanian V, Burke WW, Zhu H, Wei B (2008) Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties. J Phys Chem C 112(12):4550–4556

    Article  CAS  Google Scholar 

  22. Courtel FM, Baranova EA, Abu-Lebdeh Y, Davidson IJ (2010) In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries. J Power Sources 195(8):2355–2361

    Article  CAS  Google Scholar 

  23. Du N, Zhang H, Chen B, Ma X, Huang X, Tu J, Yang D (2009) Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Mater Res Bull 44(1):211–215

    Article  CAS  Google Scholar 

  24. Yang R, Gu Y, Li Y, Zheng J, Li X (2010) Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater 58(3):866–874

    Article  CAS  Google Scholar 

  25. Kim H, Cho J (2008) Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J Mater Chem 18:771–775

    Article  Google Scholar 

  26. Yim C-H, Baranova EA, Courtel FM, Abu-Lebdeh Y, Davidson IJ (2011) Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries. J Power Sources 196(22):9731–9736

    Article  CAS  Google Scholar 

  27. Li J, Zhao Y, Wang N, Guan L (2011) A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chem Commun 47(18):5238–5240

    Article  CAS  Google Scholar 

  28. Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J Phys Chem C 113(47):20504–20508

    Article  CAS  Google Scholar 

  29. Du Z, Yin X, Zhang M, Hao Q, Wang Y, Wang T (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64(19):2076–2079

    Article  CAS  Google Scholar 

  30. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852

    Article  CAS  Google Scholar 

  31. Wang Z, Zhang H, Li N, Shi Z, Gu Z, Cao G (2010) Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res 3(10):748–756

    Article  CAS  Google Scholar 

  32. Paek S-M, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75

    Article  CAS  Google Scholar 

  33. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49(1):133–139

    Article  CAS  Google Scholar 

  34. Huang H, Kelder EM, Chen L, Schoonman J (1999) Preparation and structure of silicon doped tin oxide composites using an advanced ultrasonic spray method. Solid State Ion 120(1–4):205–210

    Article  CAS  Google Scholar 

  35. Schoonman J (2003) Nanoionics. Solid State Ion 157(1–4):319–326

    Article  CAS  Google Scholar 

  36. Courtney IA, McKinnon WR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146(1):59–68

    Article  CAS  Google Scholar 

  37. Kim J-H, Jeong G-J, Kim Y-W, Sohn H-J, Park CW, Lee CK (2003) Tin-based oxides as anode materials for lithium secondary batteries. J Electrochem Soc 150(11):A1544–A1547

    Article  CAS  Google Scholar 

  38. Wang J, Raistrick ID, Huggins RA (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133(3):457–460

    Article  CAS  Google Scholar 

  39. Anani A, Crouch-Baker S, Huggins RA (1987) Kinetic and thermodynamic parameters of several binary lithium alloy negative electrode materials at ambient temperature. J Electrochem Soc 134(12):3098–3102

    Article  CAS  Google Scholar 

  40. Kavan L, Prochazka J, Spitler TM, Kalbac M, Zukalova M, Drezen T, Gratzel M (2003) Li insertion into Li4Ti5O12 (spinel). J Electrochem Soc 150(7):A1000–A1007

    Article  CAS  Google Scholar 

  41. Takami N, Satoh A, Hara M, Ohsaki T (1995) Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J Electrochem Soc 142(2):371–379

    Article  CAS  Google Scholar 

  42. Guyomard D, Tarascon JM (1992) Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization. J Electrochem Soc 139(4):937–948

    Article  CAS  Google Scholar 

  43. Kim I-s, Blomgren GE, Kumta PN (2004) Sn/C composite anodes for Li-ion batteries. Electrochem Solid State Lett 7(3):A44–A48

    Article  CAS  Google Scholar 

  44. Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374

    Article  CAS  Google Scholar 

  45. Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M (2006) Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery. J Power Sources 160(1):638–644

    Article  CAS  Google Scholar 

  46. Nara H, Fukuhara Y, Takai A, Komatsu M, Mukaibo H, Yamauchi Y, Momma T, Kuroda K, Osaka T (2008) Cycle and rate properties of mesoporous tin anode for lithium ion secondary batteries. Chem Lett 37(2):142–143

    Article  CAS  Google Scholar 

  47. Wang Y, Wu M, Jiao Z, Lee JY (2009) Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater 21(14):3210–3215

    Article  CAS  Google Scholar 

  48. Yu Y, Gu L, Zhu C, van Aken PA, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131(44):15984–15985

    Article  CAS  Google Scholar 

  49. Beaulieu LY, Dahn JR (2000) The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying. J Electrochem Soc 147(9):3237–3241

    Article  CAS  Google Scholar 

  50. Mao O, Dunlap RA, Dahn JR (1999) Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: I. The Sn2Fe-C system. J Electrochem Soc 146(2):405–413

    Article  CAS  Google Scholar 

  51. Mao O, Dahn JR (1999) Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: II. The Sn-Fe system. J Electrochem Soc 146(2):414–422

    Article  CAS  Google Scholar 

  52. Mao O, Dahn JR (1999) Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: III. Sn2Fe:SnFe3C active/inactive composites. J Electrochem Soc 146(2):423–427

    Article  CAS  Google Scholar 

  53. Dahn JR, Mar RE, Abouzeid A (2006) Combinatorial Study of Sn1−xCox (0 < x < 0.6) and [Sn0.55Co0.45]1−yCy (0 < y < 0.5) alloy negative electrode materials for Li-ion batteries. J Electrochem Soc 153(2):A361–A365

    Article  CAS  Google Scholar 

  54. Hassoun J, Ochal P, Panero S, Mulas G, Bonatto Minella C, Scrosati B (2008) The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. J Power Sources 180(1):568–575

    Article  CAS  Google Scholar 

  55. Hassoun J, Mulas G, Panero S, Scrosati B (2007) Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling. Electrochem Commun 9(8):2075–2081

    Article  CAS  Google Scholar 

  56. Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T (2003) Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries. Electrochem Solid State Lett 6(10):A218–A220

    Article  CAS  Google Scholar 

  57. Wolfenstine J, Campos S, Foster D, Read J, Behl WK (2002) Nano-scale Cu6Sn5 anodes. J Power Sources 109(1):230–233

    Article  CAS  Google Scholar 

  58. Thorne JS, Sanderson RJ, Dahn JR, Dunlap RA (2010) Combinatorial study of the Sn-Cu-C system for Li-ion battery negative electrode materials. J Electrochem Soc 157(10):A1085–A1091

    Article  CAS  Google Scholar 

  59. Todd ADW, Mar RE, Dahn JR (2007) Tin-transition metal-carbon systems for lithium-ion battery negative electrodes. J Electrochem Soc 154(6):A597–A604

    Article  CAS  Google Scholar 

  60. Ferguson PP, Todd ADW, Dahn JR (2008) Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries. Electrochem Commun 10(1):25–31

    Article  CAS  Google Scholar 

  61. Hassoun J, Panero S, Mulas G, Scrosati B (2007) An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries. J Power Sources 171(2):928–931

    Article  CAS  Google Scholar 

  62. Huang L, Cai J-S, He Y, Ke F-S, Sun S-G (2009) Structure and electrochemical performance of nanostructured Sn-Co alloy/carbon nanotube composites as anodes for lithium ion batteries. Electrochem Commun 11(5):950–953

    Article  CAS  Google Scholar 

  63. Chen Z, Qian J, Ai X, Cao Y, Yang H (2009) Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries. J Power Sources 189(1):730–732

    Article  CAS  Google Scholar 

  64. Lee S-I, Yoon S, Park C-M, Lee J-M, Kim H, Im D, Doo S-G, Sohn H-J (2008) Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries. Electrochim Acta 54(2):364–369

    Article  CAS  Google Scholar 

  65. Mashimo T, Tashiro S (1994) Synthesis of the WC-type tantalum nitride by mechanical alloying. J Mater Sci Lett 13(3):174–176

    Article  CAS  Google Scholar 

  66. Sony Corporation (2011) Sony, the market for notebook PC; development of a tin-based amorphous anode, for high-capacity rechargeable lithium-ion battery 3.5 Ah: the “Nexelion” (trans). Available from http://www.sony.co.jp/SonyInfo/News/Press/201107/11-078/

  67. Inoue H (2006) High capacity negative-electrode materials next to carbon; Nexelion. In: International meeting on lithium batteries, Biarritz

    Google Scholar 

  68. Mizutani S, Inoue H (2005) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same. Patent number: 2005-0208378

    Google Scholar 

  69. Kawakami S, Asao M (2005) Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery. Patent number: 6,949,312

    Google Scholar 

  70. PanasonicNewsBureau (2009) Panasonic develops high-capacity lithium-ion battery cells that can power laptops and electric vehicles. Available from http://panasonic.co.jp/corp/news/official.data/data.dir/en091225-3/en091225-3.html. Accessed January 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Abu-Lebdeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Courtel, F.M., Abu-Lebdeh, Y. (2012). Tin-Based Anode Materials for Lithium-Ion Batteries. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_4

Download citation

Publish with us

Policies and ethics