Skip to main content
Log in

Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper we present high frequency field effect transistors based on graphene nanoribbons arrays (GNRFETs). The nanoribbons serve as a channel for the transistors and are fabricated with a process based on e-beam lithography and dry etching of high mobility hydrogen intercalated epitaxial graphene. The widths of the nanoribbons vary from 50 to 20 nm, less than half those measured in previous reports for GNRFETs. Hall measurements reveal that the devices are p-doped, with mobility on the order of 2300 cm2/Vs. From DC characteristics, we find that the maximum ratio IMAX/IMIN is 5 obtained at 50 nm ribbons width. The IV characteristics of the GNRFETs are slightly non-linear at high bias without a full saturation. Therefore, despite the aggressive scaling of the graphene nanoribbon width, a bandgap is still not observed in our measurements. The high frequency performances of our GNRFETs are already significant at low bias. At 300 mV drain source voltage, the highest intrinsic (extrinsic) cut-off frequency ft reaches 82 (18) GHz and the extrinsic maximum oscillation frequency fmax is 20 GHz, which is promising for low power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  Google Scholar 

  2. Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)

    Article  Google Scholar 

  3. Montanaro, A., Mzali, S., Mazellier, J., Bezencenet, O., Larat, C., Molin, S., Legagneux, P.: 30 GHz optoelectronic mixing in CVD graphene. Nano Lett. 16, 2988–2993 (2015)

    Article  Google Scholar 

  4. Lemme, M.C.: Current status of graphene transistors. Solid State Phenom. 156, 499–509 (2009)

    Article  Google Scholar 

  5. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)

    Article  Google Scholar 

  6. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene.  Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  7. Zandiatashbar, A., Lee, G.-H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J., Koratkar, N.: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014)

    Article  Google Scholar 

  8. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  9. Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., Lin, Y., Jiang, S., Huang, Y.: High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl. Acad. Sci. USA 109, 11588–11592 (2012)

    Article  Google Scholar 

  10. Guo, Z., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., De Heer, W.A.: Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942–947 (2013)

    Article  Google Scholar 

  11. Guerriero, E., Pedrinazzi, P., Mansouri, A., Habibpour, O., Winters, M., Rorsman, N., Behnam, A., Carrion, E.A., Pesquera, A., Centeno, A., Zurutuza, A., Pop, E., Zirath, H., Sordan, R.: High-gain graphene transistors with a thin AlOx top-gate oxide. Sci. Rep. 7, 2419 (2017)

    Article  Google Scholar 

  12. Wu, Y., Jenkins, K.A., Valdes-Garcia, A., Farmer, D.B., Zhu, Y., Bol, A.A., Dimitrakopoulos, C., Zhu, W., Xia, F., Avouris, P., Lin, Y.-M.: State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012)

    Article  Google Scholar 

  13. Wu, Y., Zou, X., Sun, M., Cao, Z., Wang, X., Huo, S., Zhou, J., Yang, Y., Yu, X., Kong, Y., Yu, G., Liao, L., Chen, T.: 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. Appl, A.C.S.: Mater. Interfaces 8, 25645–25649 (2016)

    Article  Google Scholar 

  14. Wei, W., Pallecchi, E., Haque, S., Borini, S., Avramovic, V., Centeno, A., Amaia, Z., Happy, H.: Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale 8, 14097–14103 (2016)

    Article  Google Scholar 

  15. Yeh, C.-H., Lain, Y.-W., Chiu, Y.-C., Liao, C.-H., Moyano, D.R., Hsu, S.S.H., Chiu, P.-W.: Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014)

    Article  Google Scholar 

  16. Lee, J., Ha, T.-J., Li, H., Parrish, K.N., Holt, M., Dodabalapur, A., Ruoff, R.S., Akinwande, D.: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750 (2013)

    Article  Google Scholar 

  17. Park, S., Yun, J.M., Maiti, U.N., Moon, H.-S., Jin, H.M., Kim, S.O.: Device-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly. Nanotechnology 25, 014008 (2014)

    Article  Google Scholar 

  18. Lim, J., Maiti, U.N., Kim, N.-Y., Narayan, R., Lee, W.J., Choi, D.S., Oh, Y., Lee, J.M., Lee, G.Y., Kang, S.H., Kim, H., Kim, Y.-H., Kim, S.O.: Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat. Commun. 7, 10364 (2016)

    Article  Google Scholar 

  19. Wang, X., Dai, H.: Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010)

    Article  Google Scholar 

  20. Han, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  21. Meng, N., Fernandez, J.F., Vignaud, D., Dambrine, G., Happy, H.: Fabrication and characterization of an epitaxial graphene nanoribbon-based field-effect transistor. Trans, I.E.E.E. Electron Devices 58, 1594–1596 (2011)

    Article  Google Scholar 

  22. Pallecchi, E., Lafont, F., Cavaliere, V., Schopfer, F., Mailly, D., Poirier, W., Ouerghi, A.: High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 4, 4558 (2014)

    Article  Google Scholar 

  23. Gahoi, A., Wagner, S., Bablich, A., Kataria, S., Passi, V., Lemme, M.C.: Contact resistance study of various metal electrodes with CVD graphene. Solid State Electron. 125, 234–239 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Contract No. ANR-2010-BLAN-0304-01-MIGRAQUEL (Agence Nationale de la Recherche). We thank M. Moez and V. Avramovic for the RF characterization. The authors gratefully acknowledge financial support from EU FP7-ICT-2013-FET-F GRAPHENE Flagship Project (No. 604391). This work was also partly supported by the French RENATECH network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mele, D., Mehdhbi, S., Fadil, D. et al. Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications. Electron. Mater. Lett. 14, 133–138 (2018). https://doi.org/10.1007/s13391-018-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0038-x

Keywords

Navigation