Skip to main content

Advertisement

Log in

Zero-Waste Recycling Method for Nickel Leaching Residue by Direct Reduction–Magnetic Separation Process and Ceramsite Preparation

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, a novel process for beneficiation of metallic iron from nickel leaching residue and preparation of ceramsite from tailings by direct reduction–magnetic separation process is reported. The optimal conditions for direct reduction process were 1100 °C roasting temperature, 120 min duration, and 30 wt.% reductant dosage. The reduced sample was benefited from low-intensity magnetic separation. This process yielded an iron concentrate of 82.32 wt.% grade and 78.05 wt.% recovery. Hence, this metallic iron could be used as a feedstock for the steel industry. Tailings of the magnetic separation procedure were used to prepare ceramsite. Optimal conditions for preparing ceramsite were: 55% magnetic separation tailings, 20% silica, 15% fly ash, 10% charcoal, a 1150 °C roasting temperature, and a holding time of 30 min. The ceramsite properties met the requirement of CJ/T299-2008 National Standard. These results suggested that developing this solid waste would have environmental and economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Valix M, Tang J Y, and Cheung W H, Miner Eng J 12 (2001)1629.

    Article  Google Scholar 

  2. Guo Q, Qu J K, Han B B, Zhang P Y, Song Y X, and Qi T, Miner Eng J 2 (2015)1.

    Article  Google Scholar 

  3. Ma B Z, Wang C Y, Yang W J, Yin F, and Chen Y Q, Miner Eng J 9 (2013)107.

    Google Scholar 

  4. Ma B Z, Wang C Y, Yang W J, Yang B, and Zhang Y L, Miner Eng J 5 (2013)152.

    Google Scholar 

  5. Elliott R, and Pickles C A, High Temp Mater Processes J 9 (2017) 836.

    Google Scholar 

  6. Loveday B K, Miner Eng J 7 (2008)534.

    Google Scholar 

  7. Macasek F, Kufcakova J, Rajec P, Kopunec R, Jakabsky S, Lovas M, and Hredzak S, Chem Papers-Chemicke Zvesti J 3 (2004)163.

    Google Scholar 

  8. Zhu D Q, Zhou X L, Luo Y H, Pan J, and Bai B, High Temp Mater Processes J 10 (2016)1031.

    Google Scholar 

  9. Dasgupta R, and Chaubey A K, Trans Indian Inst Met J 6 (2009)187.

    Article  Google Scholar 

  10. Whittington B I and Johnson J A, Hydrometall J, 78 (2005) 256.

    Article  Google Scholar 

  11. Stamboliadis E, Alevizos G, and Zafiratos J, Miner Eng J 17 (2004) 245.

    Article  Google Scholar 

  12. Dorfling C, Akdogan G, Bradshaw S M, and Eksteen J J, Miner Eng J 6 (2011)583.

    Article  Google Scholar 

  13. Wang R, Liu Z G, Chu M S, Wang H T, Zhao W, and Gao L H, J Iron Steel Res J 5 (2018)497.

    Article  Google Scholar 

  14. Zhu D Q, Luo Y H, Pan J, and Zhou X L, High Temp Mater Processes J 2 (2016)187.

    Google Scholar 

  15. Yu W, Sun T C, Liu Z Z, Kou J, and Xu C Y, ISIJ Int J 1 (2014)56.

    Article  Google Scholar 

  16. Yu W, Wen X J, Chen J G, Kuang J Z, Tang Q Y, Tian Y C, Fu J L, Huang W Q, and Qiu T S, Miner J 2 (2017)2.

    Google Scholar 

  17. Guo Z Q, Zhu D Q, Pan J, Yao W J, Xu W Q, and Chen J, JOM J 9 (2017) 1688.

    Article  Google Scholar 

  18. Zhou X L, Zhu D Q, Pan J, and Wu T J, ISIJ Int J 7 (2015)1347.

    Google Scholar 

  19. Lei C, Yan B, Chen T, and Xiao X M, J Clean Prod J 8 (2017) 74.

    Google Scholar 

  20. Li C, Sun H H, Bai J, and Li L T, J Hazard Mater J 2 (2010) 71.

    Article  Google Scholar 

  21. Yang C C, Li S Q, Zhang C Q, Bai J X, and Guo Z J, Miner Process Extr Metall Rev J 1 (2018)44.

    Article  Google Scholar 

  22. Kumar R, Das P, Beulah M, Arjun H R, and Ignaitus G, J Adv Manuf Syst J 3 (2017)276.

    Google Scholar 

  23. Gayana B C and Chandar K R, Adv Concr Constr J 3 (2018) 222.

    Google Scholar 

  24. Manjarrez L, and Zhang L Y, J Mater Civ Eng J 9 (2018) 33.

    Google Scholar 

  25. Chen Q S, Zhang Q L, Fourie A, and Xin C, J Environ Manag J 10 (2017)20.

    Google Scholar 

  26. Kinnunen P, Ismailov A, Solismaa S, Sreenivasan H, Räisänen M L, Levänen E, and Illikainen M, J Clean Prod J 10 (2017)635.

    Google Scholar 

  27. Wu H Q, Zhang T, Pan R J, Chun Y Y, Zhou H M, Zhu W X, Peng H Z, and Zhang Q, Constr Build Mater J 5 (2018)368.

    Google Scholar 

  28. Sun M T, Yang Z M, Lu J, Fan X L, Guo R B, and Fu S F, J Chem Technol Biotechnol 2 (2018)2408.

    Google Scholar 

  29. Li H, Guo Z, Wu D F, Fan J, Huang S B, and Zhou S F, Mater J 3 (2018)359.

    Article  Google Scholar 

  30. Wen S H, Chen L, Li W Q, Ren H Q, Li K, Wu B, Hu H D, and Xu K, Sci Rep J 6 (2018)2.

    Google Scholar 

  31. Jing Q X, Wang Y Y, Chai L Y, Tang C J, Huang X D, Guo H, Wang W, and You W, Trans Nonferrous Met Soc China J 5 (2018)1053.

    Google Scholar 

  32. Liu G S, Strezov V, Lucas J A, and Wibberley L J, Thermochim Acta J 410 (2004)133.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the Natural Science Foundation of China (NO.5157041410) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhao conducted the experimental work and prepared the manuscript; Jilai Xue directed the research work and modified the manuscript; Wen Chen participated in the design of the research work at different stages.

Corresponding author

Correspondence to Jilai Xue.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Xue, J. & Chen, W. Zero-Waste Recycling Method for Nickel Leaching Residue by Direct Reduction–Magnetic Separation Process and Ceramsite Preparation. Trans Indian Inst Met 72, 1075–1085 (2019). https://doi.org/10.1007/s12666-019-01582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01582-7

Keywords

Navigation