Skip to main content
Log in

Chara braunii genome: a new resource for plant electrophysiology

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The large-celled green alga Chara provided early electrophysiological data, but this model organism lost popularity once the smaller cells of higher plants became accessible to electrophysiology and genetic manipulation. However, with the sequencing of the Chara braunii genome (Nishiyama et al. Cell 174: 448–464, 2018), the molecular identity of the underlaying ion transporters in Characeae can be found and placed in evolutionary context. As Characeae are close to ancestors of land plants, the wealth of electrophysiological data will provide insights into important aspects of plant physiology, such as salt tolerance and sensitivity, carbon concentrating mechanisms, pH banding and the action potential generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absolonova M, Beilby MJ, Sommer A, Hoepflinger MC, Foissner I (2018) Surface pH changes suggest a role for H+/OH channels in salinity response of Chara australis. Protoplasma 255:851–862

    Article  CAS  PubMed  Google Scholar 

  • Al Khazaaly S, Walker NA, Beilby MJ, Shepherd VA (2009) Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur Biophys J 39:167–174

    Article  PubMed  Google Scholar 

  • Aquino RS, Grativol C, Mourão PAS (2011) Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 6:e18862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilby MJ (2007) Action potential in charophytes. in International review of cytology, Vol. 257, ed. K.W. Jeon (San Diego, CA: Elsevier Inc.), pp 43–82

  • Beilby MJ (2015) Salt tolerance at single cell level in giant-celled Characeae. Front Plant Sci. Salinity tolerance in plants: mechanisms and regulation of ion transport, 6: 226 https://doi.org/10.3389/fpls.2015.00226

  • Beilby MJ, Al Khazaaly S (2009) The role of H+/OH channels in salt stress response of Chara australis. J Membr Biol 230:21–34

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Al Khazaaly S (2016) Re-modeling Chara action potential: I. From Thiel model of Ca2+ transient to action potential form. Special issue: biophysics of ion transport in plants. AIMS Biophysics 3(3):431–449

    Article  CAS  Google Scholar 

  • Beilby MJ, Al Khazaaly S (2017) Re-modeling Chara action potential: II. The action potential form under salinity stress. Special issue: biophysics of ion transport in plants. AIMS Biophys 4(2):298–315

  • Beilby MJ, Bisson MA (2012) pH banding in charophyte algae. Plant electrophysiology methods and cell electrophysiology. ed. A. G. Volkov. Berlin Heidelberg, Springer-Verlag: 247–271

  • Beilby MJ, Casanova MT (2014) The physiology of characean cells. Springer, Berlin

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum.1. I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual regulation response to hypertonic stress in Lamprothaminum papulosum. Plant Cell Environ 22:347–359

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA, Absolonova M (2018) The role of H+/OH channels in saline pathology of Chara australis: brief history. Bot Lett 165:45–54

    Article  CAS  Google Scholar 

  • Bisson MA, Bartholomew D (1984) Osmoregulation or turgor regulation in Chara? Plant Physiol 74:252–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson MA, Kirst GO (1980) Lamprothamnium, a euryhaline charophyte. I Osmotic relations and membrane potential at steady state. J Exp Bot 31:1223–1235

    Article  CAS  Google Scholar 

  • Blinks LR, Harris ES, Osterhout WJ (1929) Studies on stimulation in Nitella. Proc Soc Exp Biol Med 26:836–838

  • Brunet T, Arendt D (2016) From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Phil Trans Roy Soc B 371:1–14

    Article  Google Scholar 

  • Burne RV, Bauld J, de Dekker P (1980) Saline lake charophytes and their geological significance. J Sediment Petrol 50:281–294

  • Casanova MT (2013) Lamprothamnium in Australia (Characeae, Charophyceaea). Austr Syst Bot 26:268–290

    Article  Google Scholar 

  • Corti B (1774) Osservazioni microschopische sulla tremella e sulla circolazione del fluido in una pianta aquajuola. Lucca, Italy

    Google Scholar 

  • Feijo J, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay GP, Hope AB (1964) Ionic relations of cells of Chara australis: VII. The separate electrical characteristics of the plasmalemma and tonoplast. Austr J Biol Sci 17:62–77

    Article  CAS  Google Scholar 

  • Gutknecht J, Hastings DF, Bisson MA (1978) Ion transport and turgor pressure regulation in giant algal cells. In Membrane transport in biology, Vol. III, Transport Across Multimembrane Systems, eds G.Giebisch, D.Tosteson and G. Ussing (Berlin: Springer), 125–174

  • Hirono C, Mitsui T (1981) The course of activation in plasmalemma of Nitella axiliformis. In: Matsumoto AG, Kotani M (eds) Nerve membrane. University of Tokyo, Tokyo

    Google Scholar 

  • Hoffmann R, Bisson MA (1986) Chara buckellii, a euryhaline charophyte from an unusual saline environment. I. Osmotic relations at steady state. Can J Bot 64:1599–1605

    Article  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, London

    Google Scholar 

  • Initiative TAG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Jost L (1927) Elektrische potential differenzen an der einzelzelle. Sitzungsher, Heidelberger Akad. D. Wiss. (Math.-naturwiss). Kl. Jahrg.,13 Abh

  • Lara MV, Casati P, Andreo CS (2002) CO2-concentrating mechanisms in Egeria densa, a submersed aquatic plant. Physiol Plant 115:487–495

    Article  CAS  PubMed  Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666

    Article  PubMed  Google Scholar 

  • Michard E, Dias P, Feijo JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181

    Article  CAS  Google Scholar 

  • Myers EJ, Marshall A, Jennings ML, Parker MD (2016) Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH conductance pathway that is stimulated by rises in intracellular and extracellular pH. Am J Phys Cell Phys 311:C945–C959

    Google Scholar 

  • Nishiyama T et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:448–464

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Shimmen T, Tazawa M (1984) Turgor regulation in a brackish Charophyte, Lamprothamnium succinctum. II. Changes in K+, Na+ and Cl- concentrations, membrane potential and membrane resistance during turgor regulation. Plant Cell Physiol 25:573–581

  • Osterhout WJ, Harris ES (1928) Protoplasmic asymmetry in Nitella as shown by bioelectric measurements. J Gen Physiol 11:791–406

    Article  Google Scholar 

  • Osterhout WJ, Damon VE, Jacques AG (1927) Dissimilarity of inner and outer protoplasmic surfaces in Valonia. J Gen Physiol 11:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othmer HG (1997) Signal transduction and second messenger systems. In: Case studies in mathematical modeling—ecology, physiology and cell biology. Englewood cliffs: Prentice Hall, 123–186

  • Pertl-Obermeyer H, Lackner P, Schulze WX, Hoepflinger MC, Hoeftberger M, Foissner I, Obermeyer G (2018) Dissecting the subcellular membrane proteome reveals enrichment of H+ (co-) transporters and vesicle trafficking proteins in acidic zones of Chara internodal cells. PLoS One 13(8):e0201480

    Article  PubMed  PubMed Central  Google Scholar 

  • Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms. Plant Physiol 66:818–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (1991) Terrestrial rhizophytes and H+ currents circulating over at least a millimetre: an obligate relationship. New Phytol 117:177–185

    Article  Google Scholar 

  • Raven JA (2000) Land plant biochemistry. Phil Trans Roy Soc Lond B 355:833–846

    Article  CAS  Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  CAS  PubMed  Google Scholar 

  • Sanders D (1981) Physiological control of chloride transport in Chara corallina.I. Effects of low temperature, cell turgor pressure, and anions. Plant Physiol 67:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd VA, Beilby MJ (1999) The effect of an extracellular mucilage on the response to osmotic shock in the charophyte alga Lamprothamnium papulosum. J Membr Biol 170:229–242

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly S, Shimmen T (2008) Mechanoperception in Chara cells: the influence of salinity and calcium on touch activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31:1575–1591

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Tazawa M (1982) Effects of intracellular vanadate on electrogenesis, excitability and cytoplasmic streaming in Nitellopsis obtusa. Plant Cell Physiol 23:669–677

    CAS  Google Scholar 

  • Spear DG, Barr JK, Barr CE (1969) Localization of hydrogen ion and chloride ion fluxes in Nitella. J Genl Physiol 54:397–414

    Article  CAS  Google Scholar 

  • Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular plants. J Membr Biol 232:59–67

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation in plants. J Theor Biol 291:47–55

    Article  PubMed  Google Scholar 

  • Tazawa M (1964) Studies on Nitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions. Plant Cell Physiol 5:33–43

    Article  CAS  Google Scholar 

  • Tazawa M, Kikuyama M, Okazaki Y (1976) Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast. Cell Struct Funct 1:165–175

    Article  CAS  Google Scholar 

  • Tyerman SD, Beilby MJ, Whittington J, Juswono U, Newman I, Shabala S (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Austr J Plant Physiol 28:591–604

    CAS  Google Scholar 

  • Wacke M, Thiel G, Hutt MT (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membr Biol 191:179–192

    Article  CAS  PubMed  Google Scholar 

  • Walker NA (1955) Microelectrode experiments on Nitella. Austr J Biol Sci 8:476–489

    Article  CAS  Google Scholar 

  • Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiology 381:191–201

    Article  Google Scholar 

  • Williamson RE (1975) Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17:655–668

    Article  CAS  PubMed  Google Scholar 

  • Winter U, Soulie-Marsche I, Kirst GO (1996) Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant Cell Environ 19:869–879

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Beilby.

Ethics declarations

Conflict of interest

M. J. Beilby declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beilby, M.J. Chara braunii genome: a new resource for plant electrophysiology. Biophys Rev 11, 235–239 (2019). https://doi.org/10.1007/s12551-019-00512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00512-7

Keywords

Navigation