Skip to main content
Log in

Dependence of the surface-assisted fullerene-based complex structure on the template molecule design

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fullerene derivatives as a kind of star carbon materials have received intense investigation because of their three-dimensional shape, anisotropic electron mobility, and high electron affinity. Indeed, the cutting-edge developments of fullerene nanomaterials have had a tremendous impact on a wide range of applications, such as organic solar cells, field effect transistors, and photodetectors. To explore their full potential applications, research into fullerene-based multilevel nanostructures relying on hierarchical interactions from bottom to top is rapidly expanding. It is of great theoretical and practical significance to prepare multilevel fullerene nanostructures with structural and properties controlled by optimizing the influencing factors. This review would offer several aspects including the chemical structures of organic molecules and the nanostructures of the organic molecules and fullerene-organic complexes. Whether monolayers or multilayers, fullerene molecules tend to fall into a space of suitable size, in which the located positions are affected by the intermolecular interactions. For the covered surfaces, fullerenes are more likely to approach the electron-withdrawing units through the donor–acceptor and charge transfer interaction. Through the implementation of this review, an exhaustive analysis on the chemical modification, including the molecular backbone and substituents, preformed network synergies, and adsorption sites is presented. In addition, the relationship between the molecules and structures that illustrates the importance of the molecular design for the controlled fullerenes hybrid nanostructures can be further understood based on the results of the joined experimental and computational investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  2. Néel, N.; Kröger, J.; Berndt, R. Highly periodic fullerene nanomesh. Adv. Mater. 2006, 18, 174–177.

    Article  Google Scholar 

  3. Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Kelly, K. F.; Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 2005, 5, 2330–2334.

    Article  Google Scholar 

  4. Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Yao, Y. X.; Saudan, L.; Yang, H. B.; Hung, C. Y.; Alemany, L. B.; Sasaki, T.; Morin, J. F. et al. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.

    Article  Google Scholar 

  5. Yoshimoto, S.; Masuda, S.; Fukuda, T.; Kobayashi, N. Molecular assembly of fullerene-conjugated phthalocyanine derivative on Au(111) at single molecular level. J. Inorg. Biochem. 2012, 108, 178–181.

    Article  Google Scholar 

  6. Diederich, F.; Gómez-López, M. Supramolecular fullerene chemistry. Chem. Soc. Rev. 1999, 28, 263–277.

    Article  Google Scholar 

  7. Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520–2542.

    Article  Google Scholar 

  8. Wang, P.; Metzger, R. M.; Chen, B. Stable monolayers of fullerene derivatives. Thin Solid Films 1998, 327–329, 96–99.

    Article  Google Scholar 

  9. Kuzume, A.; Herrero, E.; Feliu, J. M.; Nichols, R. J.; Schiffrin, D. J. Fullerene monolayers adsorbed on high index gold single crystal surfaces. Phys. Chem. Chem. Phys. 2004, 6, 619–625.

    Article  Google Scholar 

  10. Leigh, D. F.; Nörenberg, C.; Cattaneo, D.; Owen, J. H. G.; Porfyrakis, K.; Bassi, A. L.; Ardavan, A.; Briggs, G. A. D. Self-assembly of trimetallic nitride template fullerenes on surfaces studied by STM. Surf. Sci. 2007, 601, 2750–2755.

    Article  Google Scholar 

  11. Uemura, S.; Sakata, M.; Hirayama, C.; Kunitake, M. Fullerene adlayers on various single-crystal metal surfaces prepared by transfer from L films. Langmuir 2004, 20, 9198–9201.

    Article  Google Scholar 

  12. Hands, I. D.; Dunn, J. L.; Bates, C. A. Visualization of static Jahn-Teller effects in the fullerene anion C60 −. Phys. Rev. B 2010, 82, 155425.

    Article  Google Scholar 

  13. Hung, K. T.; Huang, K. T.; Hsiao, C. Y.; Shih, C. F. Improving efficiency of pentacene/C60 based solar cells with mixed interlayers. Thin Solid Films 2011, 519, 5270–5273.

    Article  Google Scholar 

  14. Zhang, X. M; Zeng, Q. D.; Wang, C. Molecular templates and nano-reactors: Two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces. RSC Adv. 2013, 3, 11351–11366.

    Article  Google Scholar 

  15. Liang, H. L.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Two-dimensional molecular porous networks constructed by surface assembling. Coord. Chem. Rev. 2009, 253, 2959–2979.

    Article  Google Scholar 

  16. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  Google Scholar 

  17. Otero, R.; Naitoh, Y.; Rosei, F.; Jiang, P.; Thostrup, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. One-dimensional assembly and selective orientation of lander molecules on an O-Cu template. Angew. Chem., Int. Ed. 2004, 43, 2092–2095.

    Article  Google Scholar 

  18. Blunt, M. O.; Russell, J. C.; del Carmen Gimenez-Lopez, M.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74–78.

    Article  Google Scholar 

  19. De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular selfassembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139–150.

    Article  Google Scholar 

  20. Yoshimoto, S.; Tsutsumi, E.; Honda, Y.; Murata, Y.; Murata, M.; Komatsu, K.; Ito, O.; Itaya, K. Controlled molecular orientation in an adlayer of a supramolecular assembly consisting of an open-cage C60 derivative and ZnII octaethylporphyrin on Au(111). Angew. Chem. 2004, 116, 3106–3109.

    Article  Google Scholar 

  21. Červenka, J.; Flipse, C. F. J. Fullerene monolayer formation by spray coating. Nanotechnology 2010, 21, 065302.

    Article  Google Scholar 

  22. del carmen Gimenez-Lopez, M.; Räisänen, M. T.; Chamberlain, T. W.; Weber, U.; Lebedeva, M.; Rance, G. A.; Briggs, G. A. D.; Pettifor, D.; Burlakov, V.; Buck, M. et al. Functionalized fullerenes in self-assembled monolayers. Langmuir 2011, 27, 10977–10985.

    Article  Google Scholar 

  23. Xu, W.; Feng, L.; Wu, Y. S.; Wang, T. S.; Wu, J. Y.; Xiang, J. F.; Li, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. Construction and photophysics study of supramolecular complexes composed of three-point binding fullerenetrispyridylporphyrin dyads and zinc porphyrin. Phys. Chem. Chem. Phys. 2011, 13, 428–433.

    Article  Google Scholar 

  24. Sun, D. Y.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J. Am. Chem. Soc. 2002, 124, 6604–6612.

    Google Scholar 

  25. Murata, Y.; Murata, M.; Komatsu, K. 100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J. Am. Chem. Soc. 2003, 125, 7152–7153.

    Article  Google Scholar 

  26. Sánchez, L.; Otero, R.; Gallego, J. M.; Miranda, R.; Martín, N. Ordering fullerenes at the nanometer scale on solid surfaces. Chem. Rev. 2009, 109, 2081–2091.

    Article  Google Scholar 

  27. Babu, S. S.; Möhwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 2010, 39, 4021–4035.

    Article  Google Scholar 

  28. Zieleniewska, A.; Lodermeyer, F.; Roth, A.; Guldi, D. M. Fullerenes— How 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem. Soc. Rev. 2018, 47, 702–714.

    Article  Google Scholar 

  29. Yoshimoto, S.; Tsutsumi, E.; Fujii, O.; Narita, R.; Itaya, K. Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembly. Chem. Commun. 2005, 1188–1190.

    Google Scholar 

  30. Xiao, W. D.; Passerone, D.; Ruffieux, P.; Aït-Mansour, K.; Gröning, O.; Tosatti, E.; Siegel, J. S.; Fasel, R. C60/corannulene on Cu(110): A surfacesupported bistable buckybowl–buckyball host–guest system. J. Am. Chem. Soc. 2008, 130, 4767–4771.

    Article  Google Scholar 

  31. Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. A double concave hydrocarbon buckycatcher. J. Am. Chem. Soc. 2007, 129, 3842–3843.

    Article  Google Scholar 

  32. Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. Preferential trapping of C60 in nanomesh voids. J. Am. Chem. Soc. 2008, 130, 2720–2721.

    Article  Google Scholar 

  33. Zhang, J. L.; Zhang, K. H. L.; Zhong, J. Q.; Niu, T. C.; Chen, W. Low-temperature scanning tunneling microscopy/ultraviolet photoelectron spectroscopy investigation of two-dimensional crystallization of C60: Pentacence binary system on Ag(111). J. Appl. Phys. 2012, 111, 034304.

    Article  Google Scholar 

  34. Zhang, X.; Lu, Z. H.; Ye, L.; Zhan, C. L.; Hou, J. H.; Zhang, S. Q.; Jiang, B.; Zhao, Y.; Huang, J. H.; Zhang, S. L. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 2013, 25, 5791–5797.

    Article  Google Scholar 

  35. Lin, Y. Z.; Wang, Y. F.; Wang, J. Y.; Hou, J. H.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv. Mater. 2014, 26, 5137–5142.

    Article  Google Scholar 

  36. Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

    Article  Google Scholar 

  37. Räisänen, M. T.; Slater, A. G.; Champness, N. R.; Buck, M. Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chem. Sci. 2012, 3, 84–92.

    Article  Google Scholar 

  38. Karamzadeh, B.; Eaton, T.; Torres, D. M.; Cebula, I.; Mayor, M.; Buck, M. Sequential nested assembly at the liquid/solid interface. Faraday Discuss. 2017, 204, 173–190.

    Article  Google Scholar 

  39. Perdigão, L. M. A.; Saywell, A.; Fontes, G. N.; Staniec, P. A.; Goretzki, G.; Phillips, A. G.; Champness, N. R.; Beton, P. H. Functionalized supramolecular nanoporous arrays for surface templating. Chem.—Eur. J. 2008, 14, 7600–7607.

    Article  Google Scholar 

  40. Phillips, A. G.; Perdigão, L. M. A.; Beton, P. H.; Champness, N. R. Tailoring pores for guest entrapment in a unimolecular surface self-assembled hydrogen bonded network. Chem. Commun. 2010, 46, 2775–2777.

    Article  Google Scholar 

  41. Chen, W.; Zhang, H. L.; Huang, H.; Chen, L.; Wee, A. T. S. Self-assembled organic donor/acceptor nanojunction arrays. Appl. Phys. Lett. 2008, 92, 193301.

    Article  Google Scholar 

  42. Chen, W.; Zhang, H. L.; Huang, H.; Chen, L.; Wee, A. T. S. Orientationally ordered C60 on p-sexiphenyl nanostripes on Ag(111). ACS Nano 2008, 2, 693–698.

    Article  Google Scholar 

  43. Zhong, J. Q.; Huang, H.; Mao, H. Y.; Wang, R.; Zhong, S.; Chen, W. Molecular-scale investigation of C60/p-sexiphenyl organic heterojunction interface. J. Chem. Phys. 2011, 134, 154706

    Article  Google Scholar 

  44. Schull, G.; Berndt, R. Orientationally ordered (7×7) superstructure of C60 on Au(111). Phys. Rev. Lett. 2007, 99, 226105

    Article  Google Scholar 

  45. Zhang, H. L.; Chen, W.; Chen, L.; Huang, H.; Wang, X. S.; Yuhara, J.; Wee, A. T. S. C60 molecular chains on α-sexithiophene nanostripes. Small 2007, 3, 2015–2018.

    Article  Google Scholar 

  46. Chen, L.; Chen, W.; Huang, H.; Zhang, H. L.; Yuhara, J.; Wee, A. T. S. Tunable arrays of C60 molecular chains. Adv. Mater. 2008, 20, 484–488.

    Article  Google Scholar 

  47. Wen, J.; Ma, J. Oligothiophene template effects on packings and orientations of C60 molecules on Ag(111) surface. Langmuir 2010, 26, 5595–5602.

    Article  Google Scholar 

  48. Wang, R.; Mao, H. Y.; Huang, H.; Qi, D. C.; Chen, W. Scanning tunneling microscopy and photoelectron spectroscopy investigation of the sexithiophene: C60 donor–acceptor nanostructure formation on graphite. J. Appl. Phys. 2011, 109, 084307.

    Article  Google Scholar 

  49. Huang, H.; Chen, W.; Chen, L.; Zhang, H. L.; Wang, X. S.; Bao, S. N.; Wee, A. T. S. “Zigzag” C60 chain arrays. Appl. Phys. Lett. 2008, 92, 023105.

    Article  Google Scholar 

  50. Lackinger, M.; Heckl, W. M. Carboxylic acids: Versatile building blocks and mediators for two-dimensional supramolecular self-assembly. Langmuir 2009, 25, 11307–11321.

    Article  Google Scholar 

  51. Griessl, S. J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface: Playing nanosoccer. J. Phys. Chem. B 2004, 108, 11556–11560.

    Article  Google Scholar 

  52. Shen, Y. T.; Deng, K.; Zeng, Q. D.; Wang, C. Size-selective effects on fullerene adsorption by nanoporous molecular networks. Small 2010, 6, 76–80.

    Article  Google Scholar 

  53. Xu, B.; Tao, C. G.; Williams, E. D.; Reutt-Robey, J. E. Coverage dependent supramolecular structures: C60: ACA monolayers on Ag(111). J. Am. Chem. Soc. 2006, 128, 8493–8499.

    Article  Google Scholar 

  54. Xu, B.; Zhu, E. K.; Lu, C.; Liu, Y. D.; Liu, Z. Y.; Yu, D. L.; He, J. L.; Tian, Y. J. Distinct C60 growth modes on anthracene carboxylic acid templates. Appl. Phys. Lett. 2010, 96, 143115.

    Article  Google Scholar 

  55. MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene-fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844–16850.

    Article  Google Scholar 

  56. Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.

    Article  Google Scholar 

  57. Shen, Y. T.; Deng, K.; Zhang, X. M.; Lei, D.; Xia, Y.; Zeng, Q. D.; Wang, C. Selective and competitive adsorptions of guest molecules in phase-separated networks. J. Phys. Chem. C 2011, 115, 19696–19701.

    Article  Google Scholar 

  58. Krömer, J.; Rios-Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin, M.; Debaerdemaeker, T.; Mena-Osteritz, E.; Bäuerle, P. Synthesis of the first fully α-conjugated macrocyclic oligothiophenes: Cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew. Chem., Int. Ed. 2000, 39, 3481–3486.

    Article  Google Scholar 

  59. Mena-Osteritz, E.; Bäuerle, P. Complexation of C60 on a cyclothiophene monolayer template. Adv. Mater. 2006, 18, 447–451.

    Article  Google Scholar 

  60. Shimizu, H.; González, J. D. C.; Hasegawa, M.; Nishinaga, T.; Haque, T.; Takase, M.; Otani, H.; Rabe, J. P.; Iyoda, M. Synthesis, structures, and photophysical properties of π-expanded oligothiophene 8-mers and their saturn-like C60 complexes. J. Am. Chem. Soc. 2015, 137, 3877–3885.

    Article  Google Scholar 

  61. González, J. D. C.; Iyoda, M.; Rabe, J. P. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. Nat. Commun. 2017, 8, 14717.

    Article  Google Scholar 

  62. Pan, G. B.; Cheng, X. H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218–4219.

    Article  Google Scholar 

  63. Cui, K.; Schlutter, F.; Ivasenko, O.; Kivala, M.; Schwab, M. G.; Lee, S. L.; Mertens, S. F. L.; Tahara, K.; Tobe, Y.; Mullen, K. et al. Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chem.—Eur. J. 2015, 21, 1652–1659.

    Article  Google Scholar 

  64. Wang, Y. B.; Lin, Z. Y. Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc. 2003, 125, 6072–6073.

    Article  Google Scholar 

  65. Boyd, P. D. W.; Reed, C. A. Fullerene-porphyrin constructs. Acc. Chem. Res. 2005, 38, 235–242.

    Article  Google Scholar 

  66. Wang, C. L.; Zhang, W. B.; Van Horn, R. M.; Tu, Y. F.; Gong, X.; Cheng, S. Z. D.; Sun, Y. M.; Tong, M. H.; Seo, J.; Hsu, B. B. Y. et al. A porphyrinfullerene dyad with a supramolecular “double-cable” structure as a novel electron acceptor for bulk heterojunction polymer solar cells. Adv. Mater. 2011, 23, 2951–2956.

    Article  Google Scholar 

  67. Sedona, F.; Di Marino, M.; Basagni, A.; Colazzo, L.; Sambi, M. Structurally tunable self-assembled 2D cocrystals of C60 and porphyrins on the Ag (110) surface. J. Phys. Chem. C 2014, 118, 1587–1593.

    Article  Google Scholar 

  68. Di Marino, M.; Sedona, F.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110). Langmuir 2010, 26, 2466–2472.

    Article  Google Scholar 

  69. Sedona, F.; Di Marino, M.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. Fullerene/porphyrin multicomponent nanostructures on Ag(110): From supramolecular self-assembly to extended copolymers. ACS Nano 2010, 4, 5147–5154.

    Article  Google Scholar 

  70. Bonifazi, D.; Kiebele, A.; Stöhr, M.; Cheng, F.; Jung, T.; Diederich, F.; Spillmann, H. Supramolecular nanostructuring of silver surfaces via self-assembly of[60]fullerene and porphyrin modules. Adv. Funct. Mater. 2007, 17, 1051–1062.

    Article  Google Scholar 

  71. Spillmann, H.; Kiebele, A.; Stöhr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275–279.

    Article  Google Scholar 

  72. Wei, Y. Y.; Robey, S. W.; Reutt-Robey, J. E. TiOPc molecular dislocation networks as nanotemplates for C60 cluster arrays. J. Am. Chem. Soc. 2009, 131, 12026–12027.

    Article  Google Scholar 

  73. Yoshimoto, S.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular pattern of fullerene on 2D bimolecular “chessboard” consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 2008, 130, 1085–1092.

    Article  Google Scholar 

  74. Yoshimoto, S.; Tsutsumi, H.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular assembly of[60]_fullerene and highly ordered zinc octaethylporphyrin adlayer formed on Au(111) surface. Chem. Lett. 2004, 33, 914–915.

    Article  Google Scholar 

  75. Bassiouk, M.; Álvarez-Zauco, E.; Basiuk, V. A. Adsorption of mesotetraphenylporphines on thin films of C60 fullerene. Appl. Surf. Sci. 2013, 275, 374–383.

    Article  Google Scholar 

  76. Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.; Cheng, F. Y.; Güntherodt, H. J.; Jung, T.; Diederich, F. Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew. Chem., Int. Ed. 2004, 43, 4759–4763.

    Article  Google Scholar 

  77. Kiebele, A.; Bonifazi, D.; Cheng, F. Y.; Stöhr, M.; Diederich, F.; Jung, T.; Spillmann, H. Adsorption and dynamics of long-range interacting fullerenes in a flexible, two-dimensional, nanoporous porphyrin network. ChemPhysChem 2006, 7, 1462–1470.

    Article  Google Scholar 

  78. Jiang, J. Z.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Coord. Chem. Rev. 2006, 250, 424–448.

    Article  Google Scholar 

  79. Vijayaraghavan, S.; Écija, D.; Auwärter, W.; Joshi, S.; Seufert, K.; Seitsonen, A. P.; Tashiro, K.; Barth, J. V. Selective supramolecular fullerene-porphyrin interactions and switching in surface-confined C60-Ce(TPP)2 dyads. Nano Lett. 2012, 12, 4077–4083.

    Article  Google Scholar 

  80. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  Google Scholar 

  81. Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

    Article  Google Scholar 

  82. Xu, L. R.; Zhou, X.; Yu, Y. X.; Tian, W. Q.; Ma, J.; Lei, S. B. Surfaceconfined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS Nano 2013, 7, 8066–8073.

    Article  Google Scholar 

  83. Cui, D.; MacLeod, J. M.; Ebrahimi, M.; Perepichka, D. F.; Rosei, F. Solution and air stable host/guest architectures from a single layer covalent organic framework. Chem. Commun. 2015, 51, 16510–16513.

    Article  Google Scholar 

  84. Plas, J.; Ivasenko, O.; Martsinovich, N.; Lackinger, M.; De Feyter, S. Nanopatterning of a covalent organic framework host–guest system. Chem. Commun. 2016, 52, 68–71.

    Article  Google Scholar 

  85. Cui, D.; MacLeod, J. M.; Ebrahimi, M.; Rosei, F. Selective binding in different adsorption sites of a 2D covalent organic framework. CrystEngComm 2017, 19, 4927–4932.

    Article  Google Scholar 

  86. de Wild, M.; Berner, S.; Suzuki, H.; Yanagi, H.; Schlettwein, D.; Ivan, S.; Baratoff, A.; Guentherodt, H. J.; Jung, T. A. A novel route to molecular self-assembly: Self-intermixed monolayer phases. ChemPhysChem 2002, 3, 881–885.

    Article  Google Scholar 

  87. Piot, L.; Silly, F.; Tortech, L.; Nicolas, Y.; Blanchard, P.; Roncali, J.; Fichou, D. Long-range alignments of single fullerenes by site-selective inclusion into a double-cavity 2D open network. J. Am. Chem. Soc. 2009, 131, 12864–12865.

    Article  Google Scholar 

  88. Zhao, X. Y.; Watkins, D. L.; Galindo, J. F.; Shewmon, N. T.; Roitberg, A. E.; Xue, J. G.; Castellano, R. K.; Perry, S. S. Hydrogen bond directed assembly of oligothiophene/fullerene superstructures on Au(111). Org. Electron. 2015, 19, 61–69.

    Article  Google Scholar 

  89. Baris, B.; Luzet, V.; Duverger, E.; Sonnet, P.; Palmino, F.; Cherioux, F. Robust and open tailored supramolecular networks controlled by the template effect of a silicon surface. Angew. Chem., Int. Ed. 2011, 50, 4094–4098.

    Article  Google Scholar 

  90. Rochford, L. A.; Jones, T. S.; Nielsen, C. B. Epitaxial templating of C60 with a molecular monolayer. J. Phys. Chem. Lett. 2016, 7, 3487–3490.

    Article  Google Scholar 

  91. Wei, Y. Y.; Reutt-Robey, J. E. Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template. J. Am. Chem. Soc. 2011, 133, 15232–15235.

    Article  Google Scholar 

  92. Xu, J.; Liu, W. X.; Geng, Y. F.; Deng, K.; Zhan, C. L.; Zeng, Q. D. An STM/STS study of site-selective adsorption of C70 molecules onto arc-shaped BODIPY molecular-networks. Nanoscale 2017, 9, 2579–2584.

    Article  Google Scholar 

  93. Geng, Y. F.; Li, P.; Xue, J. D.; Luo, D. P.; Zhang, J. Y.; Shu, L. J.; Deng, K.; Xie, J. L.; Zeng, Q. D. Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer. Nano Res. 2017, 10, 991–1000.

    Article  Google Scholar 

  94. Zhang, S. Q.; Liu, Z. Y.; Fu, W. F.; Liu, F.; Wang, C. M.; Sheng, C. Q.; Wang, Y. F.; Deng, K.; Zeng, Q. D.; Shu, L. J. et al. Donor–acceptor conjugated macrocycles: Synthesis and host–guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701–11713.

    Article  Google Scholar 

  95. Cui, D. L.; Ebrahimi, M.; Rosei, F.; Macleod, J. M. Control of fullerene crystallization from 2D to 3D through combined solvent and template effects. J. Am. Chem. Soc. 2017, 139, 16732–16740.

    Article  Google Scholar 

  96. Mezour, M. A.; Choueiri, R. M.; Lukoyanova, O.; Lennox, R. B.; Perepichka, D. F. Hydrogen bonding vs. molecule-surface interactions in 2D self-assembly of [C60]fullerenecarboxylic acids. Nanoscale 2016, 8, 16955–16962.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21472029 and 21773041), and the National Basic Research Program of China (No. 2016YFA0200700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingdao Zeng or Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Zeng, Q. & Wang, C. Dependence of the surface-assisted fullerene-based complex structure on the template molecule design. Nano Res. 12, 1509–1537 (2019). https://doi.org/10.1007/s12274-019-2333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2333-8

Keywords

Navigation