Skip to main content
Log in

Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Warm rolling of a mild steel at 600 °C generates a microstructural anisotropy in the different planes corresponding to rolling direction, normal direction and transverse direction manifested by differences in the grain structure and the type of grain boundaries. The work concentrates on studying the effect of this microstructural anisotropy on the electrochemical behavior of the steel plates using microscopic examination and electron backscattered diffraction. The results show that the corrosion behavior of the samples depends mainly on the fraction of high-angle grain boundaries or corresponding average grain size, which, in turn, depends on the degree of deformation on different planes determined by the extent of thickness reduction. On the other hand, low-angle grain boundaries have little effect on the corrosion of all the three different planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.F. Hays, Now is the Time, World Corros. Organ., 2013, p 1–2

  2. D.A. López, W.H. Schreiner, S.R. de Sánchez, and S. Simison, The Influence of Carbon Steel Microstructure on Corrosion Layers, Appl. Surf. Sci., 2003, 207(1–4), p 69–85

    Article  Google Scholar 

  3. D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35(2), p 139–149

    Article  Google Scholar 

  4. A. Dugstad, H. Hemmer, and M. Seiersten, Effect of Steel Microstructure on Corrosion Rate and Protective Iron Carbonate Film Formation, Corrosion, 2001, 57(4), p 369–378

    Article  Google Scholar 

  5. P.D. Bilmes, C.L. Llorente, L. Saire Huamán, L.M. Gassa, and C.A. Gervasi, Microstructure and Pitting Corrosion of 13CrNiMo Weld Metals, Corros. Sci., 2006, 48(10), p 3261–3270

    Article  Google Scholar 

  6. W.R. Osório, C.M. Freire, and A. Garcia, The Role of Macrostructural Morphology and Grain Size on the Corrosion Resistance of Zn and Al Castings, Mater. Sci. Eng. A., 2005, 402(1–2), p 22–32

    Article  Google Scholar 

  7. K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion : A Review, Corrosion, 2010, 66(7), p 1–13

    Article  Google Scholar 

  8. L.Y. Qin, J.S. Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Trans. Nonferrous Met. Soc. China (English Ed.), 2010, 20(1), p 82–89

    Article  Google Scholar 

  9. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204

    Article  Google Scholar 

  10. A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani, Effect of Grain Size on Pitting Corrosion of 304L Austenitic Stainless Steel, Corros. Sci., 2015, 94(1), p 368–376

    Article  Google Scholar 

  11. A. Di Schino and J. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI, 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634

    Article  Google Scholar 

  12. Y. Li, F. Wang, and G. Liu, Grain Size Effect on the Electrochemical Corrosion Behavior of Surface Nanocrystallized Low-Carbon Steel, Corrosion, 2004, 60(10), p 891–896

    Article  Google Scholar 

  13. R. Rofagha, R. Langer, A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, The Corrosion Behaviour of Nanocrystalline Nickel, Scr. Metall. Mater., 1991, 25(12), p 2867–2872

    Article  Google Scholar 

  14. W. Luo, C. Qian, X.J. Wu, and M. Yan, Electrochemical Corrosion Behavior of Nanocrystalline Copper Bulk, Mater. Sci. Eng. A, 2007, 452(1), p 524–528

    Article  Google Scholar 

  15. A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, and G. Cerisola, Corrosion Behaviour of Nanocrystalline Cu90Ni10 Alloy in Neutral Solution Containing Chlorides, Corros. Sci., 1998, 41(3), p 463–475

    Article  Google Scholar 

  16. D. Song, A. Ma, J. Jiang, P. Lin, and D. Yang, Corrosion Behavior of Ultra-Fine Grained Industrial Pure Al Fabricated by ECAP, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1065–1070

    Article  Google Scholar 

  17. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51(3), p 225–229

    Article  Google Scholar 

  18. S. Krishnan, J. Dumbre, S. Bhatt, E.T. Akinlabi, and R. Ramalingam, Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI, 304L Austenitic Stainless Steel, Int. J. Mech. Aerosp. Ind. Mechatron. Eng., 2013, 7(4), p 239–242

    Google Scholar 

  19. K.S. Shin, M.Z. Bian, and N.D. Nam, Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals, Jom., 2012, 64(6), p 664–670

    Article  Google Scholar 

  20. M. Liu, D. Qiu, M. Zhao, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scr. Mater., 2008, 58(1), p 421–424

    Article  Google Scholar 

  21. J.W. Schultze, B. Davepon, F. Karman, C. Rosenkranz, A. Schreiber, and O. Voigt, Corrosion and Passivation in Nanoscopic and Microscopic Dimensions: The Influence of Grains and Grain Boundaries, Corros. Eng. Sci. Technol., 2004, 39(1), p 45–52

    Article  Google Scholar 

  22. J. Toribio, Residual Stress Effects in Stress-Corrosion Cracking, J. Mater. Eng. Perform., 1998, 7(1), p 173–182

    Article  Google Scholar 

  23. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill, New York, 1987

    Google Scholar 

  24. M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam, Formation of Cr23C6 During the Sensitization of AISI, 304 Stainless Steel and its Effect to Pitting Corrosion, Int. J. Electrochem. Sci., 2012, 7(10), p 9465–9477

    Google Scholar 

  25. M. Saenz de Miera, M. Curioni, P. Skeldon, and G.E. Thompson, The Behaviour of Second Phase Particles During Anodizing of Aluminium Alloys, Corros. Sci., 2010, 52(7), p 2489–2497

    Article  Google Scholar 

  26. F. Montheillet, J.J. Jonas, and M. Benferrah, Development of Anisotropy During the Cold Rolling of Aluminium Sheet, Int. J. Mech. Sci., 1991, 33(3), p 197–209

    Article  Google Scholar 

  27. N.S. Lee, J.H. Chen, P.W. Kao, L.W. Chang, T.Y. Tseng, and J.R. Su, Anisotropic Tensile Ductility of Cold-Rolled and Annealed Aluminum Alloy Sheet and the Beneficial Effect of Post-anneal Rolling, Scr. Mater., 2009, 60(5), p 340–343

    Article  Google Scholar 

  28. S. Wronski, M. Wrobel, A. Baczmanski, and K. Wierzbanowski, Effects of Cross-Rolling on Residual Stress, Texture and Plastic Anisotropy in f.c.c. and b.c.c. Metals, Mater. Charact., 2013, 77(1), p 116–126

    Article  Google Scholar 

  29. H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani, Effects of Rolling Reduction on Mechanical Properties Anisotropy of Commercially Pure Titanium, Mater. Des., 2012, 34(1), p 268–274

    Article  Google Scholar 

  30. D.N. Hawkins, Warm Working of Steels, J. Mech. Work. Technol., 1985, 11(1), p 5–21

    Article  Google Scholar 

  31. R.G. Bruna, Effects of Hot and Warm Rolling on Microstructure, Texture and Properties of Low Carbon Steel, Metall. Mater., 2011, 64(1), p 57–62

    Google Scholar 

  32. D.N. Hawkins and A.A. Shuttleworth, The Effect of Warm Rolling on the Structure and Properties of a Low-Carbon Steel, J. Mech. Work. Technol., 1979, 2(4), p 333–345

    Article  Google Scholar 

  33. A.O. Humphreys, D. Liu, M.R. Toroghinejad, E. Essadiqi, and J.J. Jonas, Warm Rolling Behaviour of Low Carbon Steels, Mater. Sci. Technol., 2003, 19(6), p 709–714

    Article  Google Scholar 

  34. H. Bhadeshia, and R. Honeycombe, Steels: Microstructure and Properties, Elsevier, New York, 2006

    Google Scholar 

  35. I.N. Bastos, S.S.M. Tavares, F. Dalard, and R.P. Nogueira, Effect of Microstructure on Corrosion Behavior of Superduplex Stainless Steel at Critical Environment Conditions, Scr. Mater., 2007, 57(10), p 913–916. doi:10.1016/j.scriptamat.2007.07.037

    Article  Google Scholar 

  36. Z.A. Foroulis and H.H. Uhlig, Effect of Cold-Work on Corrosion of Iron and Steel in Hydrochloric Acid, J. Electrochem. Soc., 1964, 111(5), p 522–528

    Article  Google Scholar 

  37. A. Kurk, M. Kciuk, and M. Basiaga, Influence of Cold Rolling on the Corrosion Resistance of Austenitic Stainless Steel, J. Achiev. Mater. Manuf. Eng., 2010, 38(2), p 154–162

    Google Scholar 

  38. V. Ocampo and L. Veleva, Effect of Cold Reduction on Corrosion of Carbon Steel in Aerated 3% Sodium Chloride, Corrosion, 2002, 58(7), p 601–607

    Article  Google Scholar 

  39. N. Dang Nam, D. Young Lee, J. Gu Kim, and N. Jin Park, Effect of Cold Rolling on Corrosion Properties of Low Alloy Steel in an Acid-Chloride Solution, Met. Mater. Int., 2014, 20(3), p 469–474

    Article  Google Scholar 

  40. G. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1976

    Google Scholar 

  41. Z. Wusatowski, and Z. Wusatowski, Phenomena Occurring During Plastic Working of Metals, Fundam. Roll., Pergamon press, Oxford, 1969, p 1–19

  42. R. Lapovok, D. Orlov, I.B. Timokhina, A. Pougis, L.S. Toth, P.D. Hodgson, A. Haldar, and D. Bhattacharjee, Asymmetric Rolling of Interstitial-Free Steel Using One Idle Roll, Metall. Mater. Trans. A, 2012, 43(4), p 1328–1340

    Article  Google Scholar 

  43. G.E. Dieter, H.A. Kunh, S.L. Semiatin, eds., Handbook of Workability and Process Design, ASM International, 2003

  44. R.W. Cahn and P. Haasen, eds., Physical Metallurgy, 4th edn., Elsevier, New York, 1996

    Google Scholar 

  45. G. Langford, Deformation of Pearlite, Metall. Trans. A, 1977, 8(6), p 861–875

    Article  Google Scholar 

  46. B. Karlsson and G. Lindén, Plastic Deformation of Ferrite—Pearlite Structures in Steel, Mater. Sci. Eng., 1975, 17(2), p 209–219

    Article  Google Scholar 

  47. Y. Pan, B.L. Adams, T. Olson, and N. Panayotou, Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750, Acta Mater., 1996, 44(12), p 4685–4695

    Article  Google Scholar 

  48. V.Y. Gertsman and S.M. Bruemmer, Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys, Acta Mater., 2001, 49(9), p 1589–1598

    Article  Google Scholar 

  49. M. Shimada, H. Kokawa, Z. Wang, Y. Sato, and I. Karibe, Optimization of Grain Boundary Character Distribution for Intergranular Corrosion Resistant 304 Stainless Steel by Twin-Induced Grain Boundary Engineering, Acta Mater., 2002, 50(9), p 2331–2341

    Article  Google Scholar 

  50. E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson, On the Relationship Between Grain Boundary Connectivity, Coincident Site Lattice Boundaries, and Intergranular Stress Corrosion Cracking, Corros. Sci., 2004, 46(10), p 2383–2404

    Article  Google Scholar 

  51. A. Bałkowiec, J. Michalski, H. Matysiak, and K.J. Kurzydlowski, Influence of Grain Boundaries Misorientation Angle on Intergranular Corrosion in 2024-T3 Aluminium, Mater. Sci., 2012, 29(4), p 305–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Nanda, V., Shekhar, S. et al. Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel. J. of Materi Eng and Perform 26, 185–194 (2017). https://doi.org/10.1007/s11665-016-2465-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2465-x

Keywords

Navigation