Skip to main content
Log in

Effect of cold rolling on the corrosion properties of low-alloy steel in an acid-chloride solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study examines the effect of a cold-rolling process on the electrochemical properties of low-alloy steel with different rolling percentages ranging from 0 to 80% in terms of the thickness reduction in an acid-chloride solution. From X-ray diffraction analysis, a cold-rolled texture is composed mainly of 〈111〉//ND γ-fibers and the pole density increases with an increase in the degree of deformation. Scanning electron microscopy shows a decrease in the grain size of low-alloy steel with an increase in the degree of cold reduction. Moreover, the corrosion rate decreases with an increase in the degree of cold reduction due to the low-energy grain boundaries of the oriented grains. From potentiodynamic test, it was confirmed that the potential and the current density were decreased with increasing cold rolling reduction. In addition, electrochemical impedance spectroscopy results revealed an increase in the charge transfer resistance of the low-alloy steel with increased levels of cold rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Salasi, T. Shahrabi, E. Roayaei, and M. Aliofkhazraei, Mater. Chem. Phys. 104, 183 (2007).

    Article  Google Scholar 

  2. M. A. Amin, S. S. A. E Rehim, E. E. F. E. Sherbini, and R. S. Bayoumi, Electrochim. Acta 52, 3855 (2007).

    Article  Google Scholar 

  3. K. N. Mohana and A. M. Badiea, Corros. Sci. 50, 2939 (2008).

    Article  Google Scholar 

  4. J. Peña, E. Torres, M. J. Turrero, A. Escribano, and P. L. Martín, Corros. Sci. 50, 2197 (2008).

    Article  Google Scholar 

  5. Y. Tomita and K. Morioka, Mater. Charact. 38, 243 (1997).

    Article  Google Scholar 

  6. C. Wang, X. Wu, J. Liu, and N. Xu, Mater. Sci. Eng. A 438–440, 267 (2006).

    Article  Google Scholar 

  7. F. Xiao, B. Liao, Y. Shan, G. Qiao, Y. Zhong, C. Zhang, and K. Yang, Mater. Sci. Eng. A 431, 41 (2006).

    Article  Google Scholar 

  8. S. S. A. Rehim, O. A. Hazzazi, M. A. Amin, and K. F. Khaled, Corros. Sci. 50, 2258 (2008).

    Article  Google Scholar 

  9. S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, T. Mannering, D. Panda, and S. Jansto, Mater. Sci. Eng. A 460–461, 335 (2006).

    Google Scholar 

  10. M. Eskandari, A. Najafizadeh, and A. Kermanpur, Mater. Sci. Eng. A 519, 46 (2009).

    Article  Google Scholar 

  11. B. R. Kumara, A. K. Singh, S. Das, and D. K. Bhattacharya, Mater. Sci. Eng. A 364, 132 (2004).

    Article  Google Scholar 

  12. S. H. Nedjad, M. N. Ahmadabadi, and T. Furuhara, Mater. Sci. Eng. A 485, 544 (2008).

    Article  Google Scholar 

  13. H. Zhu, A. K. Ghosh, and K. Maruyamaa, Mater. Sci. Eng. A 419, 115 (2006).

    Article  Google Scholar 

  14. R. Saha and R. K. Ray, Mater. Sci. Eng. A 527, 1882 (2010).

    Article  Google Scholar 

  15. Y. Kaneno, A. Takahashi, and T. Takasugi, Mater. Sci. Eng. A 431, 328 (2006).

    Article  Google Scholar 

  16. H. H. Uhlig and R.W. Revie, Corrosion and Corrosion Control, 3rd ed., John Willey & Sons, New York (1985).

    Google Scholar 

  17. T. F. Waters, Fundamentals of Manufacturing for Engineers, 1st ed., Taylor & Francis e-library, London (1996).

    Google Scholar 

  18. V. J. MartõÂneza, J. I. Verdejaa, and J. A. Pero-Sanz, Mater. Charact. 46, 45 (2001).

    Article  Google Scholar 

  19. Z. A. Foroulis and H. H. Uhlig, J. Electrochem. Soc. 111, 522 (1964).

    Article  Google Scholar 

  20. C. M. Ocampo and L. Veleva, Corrosion 58, 601 (2002).

    Article  Google Scholar 

  21. A. Kulovits, S. X. Mao, and J. M. K. Wiezorek, Acta Mater. 56, 4836 (2008).

    Article  Google Scholar 

  22. A. Martínez-de-Guerenu, F. Arizti, M. Díaz-Fuentes, and I. Gutiérrez, Acta Mater. 52, 3657 (2004).

    Article  Google Scholar 

  23. H. J. Bunge, Texture Analysis in Materials Science, Butterworths, London (1982).

    Google Scholar 

  24. J. G. Kim and R. A. Buchanan, Corrosion 50, 658 (1994).

    Article  Google Scholar 

  25. N. D. Nam, M. J. Kim, Y. W. Jang, and J. G. Kim, Corros. Sci. 52, 14 (2010).

    Article  Google Scholar 

  26. S. A. Park, S. H. Lee, and J. G. Kim, Met. Mater. Int. 18, 957 (2012).

    Article  Google Scholar 

  27. J. Y. Kang, B. Bacroix, H. Regle, K. H. Oh, and H. C. Lee, Acta Mater. 55, 4935 (2007).

    Article  Google Scholar 

  28. P. J. Hurley, B. C. Muddle, and P. D. Hodgson, Metall. Mater. Trans. A 32, 1507 (2002).

    Article  Google Scholar 

  29. Y. Zhang, S. Liang, A. Javed, and D. Guan, Met. Mater. Int. 19, 555 (2013).

    Article  Google Scholar 

  30. Z. F. Wang, P. H. Li, Y. Guan, Q. F. Chen, and S. K. Pu, Corros. Sci. 51, 954 (2009).

    Article  Google Scholar 

  31. C. A. Schuh, M. Kumar, and W. E. King, Acta Mater. 51, 687 (2003).

    Article  Google Scholar 

  32. R. Saha and R. K. Ray, Mater. Lett. 62, 222 (2008).

    Article  Google Scholar 

  33. M. Shimada, H. Hokawa, Z. J. Wang, Y. S. Sato, and I. Karibe, Acta Mater. 50, 2331 (2002).

    Article  Google Scholar 

  34. M. Michiuchi, H. Kokawa, Z. J. Wang, Y. S. Sato, and K. Sakai, Acta Mater. 54, 5179 (2006).

    Article  Google Scholar 

  35. D. A. Jonse, Principles and Prevention of Corrosion, Second ed., Prentice-Hall, New Jersey (1996).

    Google Scholar 

  36. B. Ma, A. K. Tieu, C. Lu, and Z. Jian, J. Mater. Proc. Tech. 125–126, 657 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, N.D., Lee, D.Y., Kim, J.G. et al. Effect of cold rolling on the corrosion properties of low-alloy steel in an acid-chloride solution. Met. Mater. Int. 20, 469–474 (2014). https://doi.org/10.1007/s12540-014-3009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-3009-2

Key words

Navigation