Skip to main content
Log in

Carrier Transport Mechanism and Barrier Height of B-, Al- and B-Al-Ion-Doped ZnO Film/Graphene Schottky Contacts Prepared Using the Sol–Gel Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, graphene/ZnO Schottky contacts with different ion doping were fabricated by the sol–gel method. The results showed that the nanoparticles growth on the surface of ZnO film was limited by ion doping, and the number and size of nanoparticles decreased for B ion doping. Further, the ZnO film band gap presented a decreasing trend with B, Al and B-Al ion doping. The electrical properties of the graphene/ZnO Schottky contact incorporating an ion-doped ZnO film were investigated, where the results suggested that ion doping could effectively improve the barrier height and reduce the leakage current. This phenomenon can be explained by the reduction of the oxygen vacancies on the surface of the ZnO film by ion doping, which leads to a reduction of the defect level at the interface and weakened Fermi level pinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Q. Bao and K.P. Loh, ACS Nano 6, 3677 (2012).

    Article  Google Scholar 

  2. C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, and S.B. Cronin, Nano Lett. 11, 1863 (2011).

    Article  Google Scholar 

  3. D. Tomer, S. Rajput, L.J. Hudy, and C.H. Li, Appl. Phys. Lett. 105, 021607 (2014).

  4. Y. Wu, X. Yan, X. Zhang, and X. Ren, Appl. Phys. Lett. 109, 183101 (2016).

    Article  Google Scholar 

  5. Y. Seo, H. Cho, H. Jang, W. Jang, J. Lim, Y. Jang, T. Gu, J. Choi, and D. Whang, Adv. Electron. Mater. 4, 1700622 (2018).

  6. T. Han, F.Y. Meng, S. Zhang, and X.M. Cheng, J. Appl. Phys. 110, 1887 (2011).

    Google Scholar 

  7. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).

    Article  Google Scholar 

  8. K. Ip, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, S. Kim, and J.R. LaRoche, Appl. Phys. Lett. 84, 2835 (2004).

    Article  Google Scholar 

  9. C. Tsiarapas, D. Girginoudi, and N. Georgoulas, Semicond. Sci. Technol. 29, 137 (2014).

    Article  Google Scholar 

  10. L. Agarwal, B.K. Singh, S. Tripathi, and P. Chakrabarti, Thin Solid Films 612, 259 (2016).

    Article  Google Scholar 

  11. X.C. Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, B. Xiao, and L.X. Song, Appl. Phys. Lett. 88, 252503 (2006).

    Article  Google Scholar 

  12. A.K. Abduev, A.K. Akhmedov, and A.S. Asvarov, Sol. Energy Mater. Sol. C 91, 258 (2007).

    Article  Google Scholar 

  13. M. Dutta, T. Ghosh, and D. Basak, J. Electron. Mater. 38, 2335 (2009).

    Article  Google Scholar 

  14. A. Mallick and D. Basak, Prog. Mater. Sci. 96, 86 (2018).

    Article  Google Scholar 

  15. H. Lee, N. An, S. Jeong, S. Kang, S. Kwon, J. Lee, Y. Lee, K.D. Young, and S. Lee, Curr. Appl. Phys. 17, 552 (2017).

    Article  Google Scholar 

  16. L. Duan, F. He, Y. Tian, B. Sun, J. Fan, X. Yu, L. Ni, Y. Zhang, Y. Chen, and W. Zhang, ACS Appl. Mater. Interfaces 9, 8161 (2017).

    Article  Google Scholar 

  17. B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Mater. Sci. Eng. B 71, 301 (2000).

    Article  Google Scholar 

  18. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, and S.J. Chua, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  19. P.F. Carcia, R.S. Mclean, M.H. Reilly, and G.N. Jr, Appl. Phys. Lett. 82, 1117 (2003).

    Article  Google Scholar 

  20. J.H. Lee and B.O. Park, Thin Solid Films 42, 694 (2003).

    Google Scholar 

  21. P. Ariyakkani, L. Suganya, and B. Sundaresan, J. Alloys Compd. 695, 3467 (2017).

    Article  Google Scholar 

  22. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, and C.K. Lin, Thin Solid Films 517, 1032 (2008).

    Article  Google Scholar 

  23. R.N. Gayen and R. Paul, Thin Solid Films 605, 248 (2016).

    Article  Google Scholar 

  24. S. Yan, H. Wang, X.U. Jiwen, L. Yang, W. Qiu, Q. Chen, and D. Han, Bull. Mater. Sci. 39, 1 (2016).

    Article  Google Scholar 

  25. G.M. Foster, H. Gao, G. Mackessy, A.M. Hyland, M.W. Allen, B. Wang, D. Look, and J. Brillson, Appl. Phys. Lett. 111, 101604 (2017).

    Article  Google Scholar 

  26. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R. Ruoff, Science 324, 1312 (2009).

    Article  Google Scholar 

  27. H.L. Meyerheim, A. Ernst, K. Mohseni, C. Tusche, W.A. Adeagbo, I.V. Maznichenko, W. Hergert, and G.R. Castro, Phys. Rev. B 90, 085423 (2014).

    Article  Google Scholar 

  28. Y. Cengellenmis, J. Alloys. Compd. 512, 171 (2012).

    Article  Google Scholar 

  29. N. Nagarani, J. Photonics Spintron. 2, 19 (2013).

    Google Scholar 

  30. P. Dhamodharan, C. Manoharan, M. Bououdina, R. Venkadachalapathy, and S. Ramalingam, Sol. Energy 141, 127 (2017).

    Article  Google Scholar 

  31. Y. Caglar, M. Caglar, and S. Ilican, Curr. Appl. Phys. 12, 963 (2012).

    Article  Google Scholar 

  32. S.W. Xue, X.T. Zu, W.G. Zheng, H.X. Deng, and X. Xiang, Phys. B 381, 209 (2006).

    Article  Google Scholar 

  33. Y. Li, Y. Li, J. Zhang, T. Tong, and W. Ye, J. Phys. D Appl. Phys. 51, 095104 (2018).

    Article  Google Scholar 

  34. H. Liu, F. Zeng, Y. Lin, G. Wang, and F. Pan, Appl. Phys. Lett. 102, 041301 (2013).

    Google Scholar 

  35. X. Meng, Z. Shi, X. Chen, X. Zeng, and Z. Fu, J. Appl. Phys. 107, 459 (2010).

    Google Scholar 

  36. Z.G. Wang, X.T. Zu, S. Zhu, and L.M. Wang, Physica E 35, 199 (2006).

    Article  Google Scholar 

  37. P.T. Hsieh, Y.C. Chen, K.S. Kao, and C.M. Wang, Appl. Phys. A 90, 317 (2008).

    Article  Google Scholar 

  38. Y. Ohta, Y. Haga, and Y. Abe, Jpn. J. Appl. Phys. 36, 1040 (1997).

    Article  Google Scholar 

  39. Y. Caglar, M. Caglar, and S. Ilican, Curr. Appl. Phys. 12, 963 (2012).

    Article  Google Scholar 

  40. V.K. Sahu, P. Misra, R.S. Ajimsha, A.K. Das, and B. Singh, Mater. Sci. Semicond. Proc. 54, 1 (2016).

    Article  Google Scholar 

  41. T. Terasako, Y. Ogura, S. Fujimoto, H. Song, H. Makino, M. Yagi, S. Shirakata, and T. Yamamoto, Thin Solid Films 549, 12 (2013).

    Article  Google Scholar 

  42. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).

    Article  Google Scholar 

  43. M.W. Allen and S.M. Durbin, Appl. Phys. Lett. 92, 1023 (2008).

    Google Scholar 

  44. C. Tsiarapas, D. Girginoudi, E.I. Dimitriadis, and N. Georgoulas, J. Vac. Sci. Technol. B 35, 031203 (2017).

    Article  Google Scholar 

  45. C. Xie, J. Jie, B. Nie, and T. Yan, Appl. Phys. Lett. 100, 193103 (2012).

    Article  Google Scholar 

  46. W. Jin, Y. Ye, L. Gan, B. Yu, P. Wu, Y. Dai, H. Meng, X. Guo, and L. Dai, J. Mater. Chem. 22, 2863 (2012).

    Article  Google Scholar 

  47. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, and A.F. Hebard, Nano Lett. 12, 2863 (2012).

    Article  Google Scholar 

  48. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys. 113, 332001 (2013).

    Article  Google Scholar 

  49. J.H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwon, C.C. Hwang, J. Wu, and J.Y. Park, Appl. Phys. Lett. 103, 171604 (2013).

    Article  Google Scholar 

  50. M. Kumar, S. Mookerjee, and T. Som, Nanotechnology 27, 375702 (2016).

    Article  Google Scholar 

  51. S. Lee, Y. Lee, D.Y. Kim, and T.W. Kang, Appl. Phys. Lett. 96, 293 (2010).

    Google Scholar 

  52. M.W. Chen, J.R.D. Retamal, C.Y. Chen, and J.H. He, IEEE. Electr. Device Lett. 33, 411 (2012).

    Article  Google Scholar 

  53. S.H. Kim, H.K. Kim, and T.Y. Seong, Appl. Phys. Lett. 86, 895 (2005).

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under contract No. 51504147 and No. 21502109, the Industrial Field of Key Research and Development Plan of Shaanxi Province No. 2018GY-040, the Natural Science Foundation of Shaanxi Province No. 2017JQ2017 and the Doctor Foundation of Shaanxi University of Technology No. SLGQD2017-12. Thank you to Mr.Wang of Northwest Research Institute of nonferrous metals for XPS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ma, K., Li, Y. et al. Carrier Transport Mechanism and Barrier Height of B-, Al- and B-Al-Ion-Doped ZnO Film/Graphene Schottky Contacts Prepared Using the Sol–Gel Method. J. Electron. Mater. 48, 3713–3720 (2019). https://doi.org/10.1007/s11664-019-07131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07131-8

Keywords

Navigation