Skip to main content
Log in

The effect of annealing on electrical properties of graphene/ZnO schottky contact

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene/ZnO schottky contacts was fabricated by the sol–gel method. The results showed that the crystallization of the ZnO films was improved with increasing of annealing temperature and a grain growth demonstrates in the preferred direction of (002). The graphene/ZnO schottky contact ideality factor decreased and barrier height values increased with increasing of annealing temperature. This result can be explained by weakening of the Fermi level pinning owing to the reduction of oxygen vacancies at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoçd, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  2. H.L. Mosbacker, S. El Hage, M. Gonzalez, S.A. Ringel, M. Hetzer, D.C. Look, G. Cantwell, J. Zhang, J.J. Song, L.J. Brillson, J. Vac. Sci. Technol. B 25, 1405 (2007)

    Article  Google Scholar 

  3. A.H. Ali, Z. Hassan, A. Shuhaimi, Appl. Sur. Sci. 443, 544 (2018)

    Article  Google Scholar 

  4. L. Dai, Acc. Chem. Res. 46, 31 (2013)

    Article  Google Scholar 

  5. S. Tongay, T. Schumann, A.F. Hebard, Appl. Phys. Lett. 95, 222103 (2009)

    Article  Google Scholar 

  6. S. Lee, Y. Lee, D.Y. Kim, E.B. Song, S.M. Kim, Appl. Phys. Lett. 102, 041301 (2013)

    Google Scholar 

  7. S. Liu, Q. Liao, S. Lu, Z. Zheng, G. Zhang, Z. Yue, Adv. Funct. Mater. 26, 1347 (2016)

    Article  Google Scholar 

  8. L. Duan, F. He, Y. Tian, B. Sun, J. Fan, X. Yu, Acs Appl. Mater. Interfaces 9, 8161 (2017)

    Article  Google Scholar 

  9. M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Thin. Solid. Films 403, 485 (2002)

    Article  Google Scholar 

  10. M. Alexiadou, M. Kandyla, G. Mousdis, M. Kompitsas, Appl. Phys. A 123, 262 (2017)

    Article  Google Scholar 

  11. R. Pietruszka, B.S. Witkowski, S. Zimowski, T. Stapinski, M. Godlewski, Surf. Coat. Tech. 319, 164 (2017)

    Article  Google Scholar 

  12. M.S. Oh, R. Navamathavan, Rsc Adv. 7, 16119 (2017)

    Article  Google Scholar 

  13. S.N. Bai, S.C. Wu, J. Mater. Sci. Mater. Electron. 22, 339 (2011)

    Article  Google Scholar 

  14. Y.P. Li, Y.F. Li, J.H. Zhang, T. Tong, W. Ye, J Phys D: Appl Phys. 51, 095104 (2018)

    Article  Google Scholar 

  15. C.S. Barret, T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980)

    Google Scholar 

  16. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn., (Prentice Hall, Upper Saddle River, 2001

    Google Scholar 

  17. Y.C. Lee, S.Y. Hu, W. Water, K.K. Tiong, Z.C. Feng, Y.T. Chen, C.H. Jen, J.W. Lee, C.C. Huang, J.L. Shen, M.H. Cheng, J. Lumin. 129, 148 (2009)

    Article  Google Scholar 

  18. D.C. Agarwal, F. Singh, D. Kabiraj, S. Sen, P.K. Kulariya, I. Sulania, S. Nozaki, R.S. Chauhan, D.K. Avasthi, J. Phys. D 41, 045305 (2008)

    Article  Google Scholar 

  19. P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Appl. Phys. A 90, 317 (2008)

    Article  Google Scholar 

  20. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  Google Scholar 

  21. T.F. Zhang, G.A. Wu, J.Z. Wang, Y.Q. Yu, D.Y. Zhang, D.D. Wang, J.B. Jiang, J.M. Wang, L.B. Luo, Nanophotonics 6, 1 (2016)

    Article  Google Scholar 

  22. M.W. Allen, S.M. Durbin, Appl. Phys. Lett. 92, 1023 (2008)

    Google Scholar 

  23. D. Somvanshi, S. Jit Mean, IEEE Electron. Dev. Lett. 34, 1238 (2013)

    Article  Google Scholar 

  24. C. Tsiarapas, D. Girginoudi, N. Georgoulas, Superlattices Microstruct. 75, 171 (2014)

    Article  Google Scholar 

  25. S. Lee, Y. Lee, D.Y. Kim, T.W. Kang, Appl. Phys. Lett. 96, 293 (2010)

    Google Scholar 

  26. J. Kiss, A. Witt, B. Meyer, D. Marx, J. Chem. Phys. 130, 267 (2009)

    Article  Google Scholar 

  27. D.C. Oh, S. Kim, J.J. Makino, Appl. Phys. Lett. 86, 383 (2005)

    Google Scholar 

  28. S.K. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  Google Scholar 

  29. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 113, 234509 (2013)

    Article  Google Scholar 

  30. C. Tsiarapas, D. Girginoudi, N. Georgoulas, Mater. Sci. Semicond. Proc. 17, 199 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under contract No. 21502109, the Natural Science Foundation of Shaanxi Province No. 2017JQ2017 and the Doctor Foundation of Shaanxi University of Technology No. SLGQD2017-12. Thank you for Mr.Wang of Northwest Research Institute of nonferrous metals for XPS measurement respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Zhang, H. et al. The effect of annealing on electrical properties of graphene/ZnO schottky contact. J Mater Sci: Mater Electron 29, 12408–12413 (2018). https://doi.org/10.1007/s10854-018-9356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9356-x

Navigation