Skip to main content
Log in

Design and Characterization of Novel Potentially Biodegradable Triple-Shape Memory Polymers Based on Immiscible Poly(l-lactide)/Poly(ɛ-caprolactone) Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, covalently cross-linked network strategy has been applied to prepare new triple-shape memory polymers (TSPs) based on poly(l-lactide) (PLA)/poly(ɛ-caprolactone) (PCL) blends. The TSPs were fabricated by adding di-cumyl peroxide, with triallyl isocyanurate as a coagent for performing the cross-linking reaction. The differential scanning calorimetry (DSC) analysis demonstrated that all the PLA/PCL blends show two melting points (Tm,PCL and Tm,PLA), which can be employed as the transition temperature (Ttrans) to induce triple-shape memory behavior. The scanning electron microscopy (SEM) analysis indicated that there are two immiscible morphologies: co-continuous structure and matrix-droplet. The influence of temperature on the crystalline phase changes was analyzed by X-ray diffraction at various temperatures. The results revealed that during the heating–cooling cycle, the degree of crystallinity decreased when the temperature increased and at higher temperature, the crystallization peaks of PCL disappeared. Multiple thermal–mechanical tests were performed and the results showed that the composition ratio of the two phases plays an important role in the triple-shape memory behavior. The results confirmed that the excellent shape memory behavior was obtained for the sample containing 50 wt% PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lendlin A, Kelch S (2002) Angew Chem Int Ed 41:2034

    Article  Google Scholar 

  2. Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1543

    Article  CAS  Google Scholar 

  3. Abdallah-Elhirtsi S, Fitoussi J, Rashmi BJ, Prashantha K, Farzaneh S, Lacrampe MF, Krawczak P, Tcharkhtchi (2015) Polym Compos 36:1145

    Article  CAS  Google Scholar 

  4. Memarian F, Fereidoon A, Ahangari MG, Khonakdar HA (2017) Polym Compos. https://doi.org/10.1002/pc.24387

    Article  Google Scholar 

  5. Rousseau IA (2008) Polym Eng Sci 48:2075

    Article  CAS  Google Scholar 

  6. Lei M, Yu K, Lu H, Qi HJ (2017) Polymer 109:216

    Article  CAS  Google Scholar 

  7. Bae CY, Park JH, Kim EY, Kim BK (2011) J Mater Chem 21:11288

    Article  CAS  Google Scholar 

  8. Voit W, Ware T, Dasari RR, Smith P, Danz L, Simon D, Barlow S, Marder SR, Gall K (2010) Adv Funct Mater 20:162

    Article  CAS  Google Scholar 

  9. Zhang S, Yu Z, Govender T, Luo H, Li B (2008) Polymer 49:3205

    Article  CAS  Google Scholar 

  10. Raquez JM, Vanderstappen S, Meyer F, Verge P, Alexandre M, Thomassin JM, Jerome C, Dubois P (2011) Chem Eur J 17:10135

    Article  CAS  Google Scholar 

  11. Ortega AM, Yakacki CM, Dixon SA, Likos R, Greenberg AR, Gall K (2012) Soft Matter 8:7381

    Article  CAS  Google Scholar 

  12. Samuel C, Barrau S, Lefebvre JM, Raquez JM, Dubois P (2014) Macromolecules 47:6791

    Article  CAS  Google Scholar 

  13. Wang WS, Ping P, Chen XS, Jing XB (2006) Eur Polym J 42:1240

    Article  CAS  Google Scholar 

  14. Pilate F, Mincheva R, Winter JD, Gerbaux P, Wu L, Todd R, Raquez JM, Dubois P (2014) Chem Mater 26:5860

    Article  CAS  Google Scholar 

  15. Zhang J, Wu G, Huang C, Niu Y, Chen C, Chen Z, Yang K, Wang Y (2012) J Phys Chem C 116:5835

    Article  CAS  Google Scholar 

  16. Zhang MQ, Yang KK, Wang YZ (2015) Chin Chem Lett 26:1221

    Article  Google Scholar 

  17. Zhang T, Wen Z, Hui Y, Yang K, Zhou Q, Wang Y (2015) Polym Chem 6:4177

    Article  CAS  Google Scholar 

  18. Pretsch T (2010) Smart Mater Struct 19:015006

    Article  Google Scholar 

  19. Behl M, Lendlein A (2010) J Mater Chem 20:3335

    Article  CAS  Google Scholar 

  20. Bellin I, Kelch S, Langer R, Lendlein A (2006) Proc Natl Acad Sci USA 103:18043

    Article  CAS  Google Scholar 

  21. Xie T (2011) Polymer 52:4958

    Google Scholar 

  22. Zotzmann J, Behl M, Feng YK, Lendlein A (2010) Adv Funct Mater 20:3583

    Article  CAS  Google Scholar 

  23. Ahn SK, Kasi RM (2011) Adv Funct Mater 21:4543

    Article  CAS  Google Scholar 

  24. Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W (2012) Macromolecules 45:1062

    Article  CAS  Google Scholar 

  25. Xie T, Page AK, Eastman SA (2011) Adv Funct Mater 21:2057

    Article  Google Scholar 

  26. Xie T (2010) Nature 464:267

    Article  CAS  Google Scholar 

  27. Li J, Liu T, Pan Y, Xia S, Zhang Z, Ding X, Peng Y (2012) Macromol Chem Phys 213:2246

    Article  CAS  Google Scholar 

  28. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1

    Article  Google Scholar 

  29. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  30. Dipa R, Sarkar BK (2001) J Appl Polym Sci 80:1013

    Article  Google Scholar 

  31. Sen T, Reddy HN (2013) Adv Mater Sci Eng 2013:1

    Google Scholar 

  32. Liao HT, Wu CS (2009) Mater Sci Eng A 515:207

    Article  Google Scholar 

  33. Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CY, Chen KN, Wu CS (2009) Polym Plast Technol Eng 48:571

    Article  CAS  Google Scholar 

  34. Radusch HJ, Kolesov I, Gohs U, Heinrich G (2012) Macromol Mater Eng 297:1225

    Article  CAS  Google Scholar 

  35. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Liu B (2011) Macromol Chem Phys 212:613

    Article  CAS  Google Scholar 

  36. Zhang H, Wang H, Zhong W, Du Q (2009) Polymer 50:1596

    Article  CAS  Google Scholar 

  37. Xie H, Cheng CY, Du L, Fan CJ, Deng XY, Yang KK (2016) Macromolecules 49:3845

    Article  CAS  Google Scholar 

  38. Zhao Q, Qi HJ, Xie T (2015) Prog Polym Sci 49–50:79

    Article  Google Scholar 

  39. Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Eur Polym J 43:1779

    Article  CAS  Google Scholar 

  40. Bai H, Liu H, Bai D, Zheng Q, Wang K, Deng H, Chen F, Fu Q (2014) Polym Chem 5:5985

    Article  CAS  Google Scholar 

  41. Li SC, Liu H, Zeng W (2011) J Appl Polym Sci 121:2614

    Article  CAS  Google Scholar 

  42. Yang SL, Wu ZH, Yang W, Yang MB (2008) Polym Test 27:957

    Article  CAS  Google Scholar 

  43. Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Carbohydr Polym 124:237

    Article  CAS  Google Scholar 

  44. Androsch R, Wundelich B (2005) Polymer 46:12556

    Article  CAS  Google Scholar 

  45. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E (2014) Macromolecules 47:5186

    Article  CAS  Google Scholar 

  46. Righetti MC, Tombari E (2011) Thermochim Acta 522:118

    Article  CAS  Google Scholar 

  47. Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Macromolecules 29:191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaeil Ghasemi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molavi, F.K., Ghasemi, I., Messori, M. et al. Design and Characterization of Novel Potentially Biodegradable Triple-Shape Memory Polymers Based on Immiscible Poly(l-lactide)/Poly(ɛ-caprolactone) Blends. J Polym Environ 27, 632–642 (2019). https://doi.org/10.1007/s10924-019-01366-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01366-6

Keywords

Navigation