Skip to main content
Log in

Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Fully biodegradable blends with low shape memory recovery temperature were obtained based on poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC). By virtue of their similar chemical structures, in situ cross-linking reaction initiated by dicumyl peroxide (DCP) between PLA and PPC chains was realized in PLA/PPC blends. Therefore, the compatibility between PLA and PPC was increased, which obviously changed the phase structures and increased the elongation at break of the blends. The compatibilized blends had a recovery performance at 45 °C. Combining the changes of phase structures, the mechanism of the shape memory was discussed. It was demonstrated that in situ compatibilization by dicumyl peroxide was effective to obtain eco-friendly PLA/PPC blends with good mechanical and shape memory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cha, K. J.; Lih, E.; Choi, J.; Joung, Y. K.; Ahn, D. J.; Han, D. K. Shape-memory effect by specific biodegradable polymer blending for biomedical applications. Macromol. Biosci. 2014, 14(5), 667–678.

    Article  CAS  PubMed  Google Scholar 

  2. Wong, Y. S.; Stachurski, Z. H.; Venkatraman, S. S. Modeling shape memory effect in uncrosslinked amorphous biodegradable polymer. Polymer 2011, 52(3), 874–880.

    Article  CAS  Google Scholar 

  3. Kotharangannagari, V. K.; Krishnan, K. Biodegradable hybrid nanocomposites of starch/lysine and zno nanoparticles with shape memory properties. Mater. Design 2016, 109, 590–595.

    Article  CAS  Google Scholar 

  4. Navarro-Baena, I.; Sessini, V.; Dominici, F.; Torre, L.; Kenny, J. M.; Peponi, L. Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 2016, 132, 97–108.

    Article  CAS  Google Scholar 

  5. Gu, S.; Gao, X.; Jin, S.; Liu, Y. Biodegradable shape memory polyurethanes with controllable trigger temperature. Chinese J. Polym. Sci. 2016, 34(6), 720–729.

    Article  CAS  Google Scholar 

  6. Zini, E.; Scandola, M.; Dobrzynski, P.; Kasperczyk, J.; Bero, M. Shape memory behavior of novel (L-lactide-glycolidetrimethylene carbonate) terpolymers. Biomacromolecules 2009, 8(11), 3661–3667.

    Article  CAS  Google Scholar 

  7. Xing, Q.; Li, R.; Dong, X.; Zhang, X.; Zhang, L.; Wang, D. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33(9), 1294–1304.

    Article  CAS  Google Scholar 

  8. Talbamrung, T.; Kasemsook, C.; Sangtean, W.; Wachirahuttapong, S.; Thongpin, C. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend. Energy. Proced. 2016, 89, 274–281.

    Article  CAS  Google Scholar 

  9. Jing, X.; Mi, H.; Peng, X.; Turng, L. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym. Eng. Sci. 2015, 55(1), 70–80.

    Article  CAS  Google Scholar 

  10. Wei, Z.; Long, C.; Yu, Z. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 2009, 50(5), 1311–1315.

    Article  CAS  Google Scholar 

  11. Yuan, D.; Chen, Z.; Xu, C.; Chen, K.; Chen, Y. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TVPs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856–2865.

    Article  CAS  Google Scholar 

  12. Barreto, C.; Altskär, A.; Fredriksen, S.; Hansen, E.; Rychwalski, R. W. Multiwall carbon nanotube/ppc composites: preparation, structural analysis and thermal stability. Eur. Polym. J. 2013, 49(8), 2149–2161.

    Article  CAS  Google Scholar 

  13. Wang, X. Y.; Weng, Y. X.; Wang, W.; Huang, Z. G.; Wang, Y. Z. Modification of poly(propylene carbonate) with chain extender ADR-4368 to improve its thermal, barrier, and mechanical properties. Polym. Test 2016, 54, 301–307.

    Article  CAS  Google Scholar 

  14. Xing, C.; Wang, H.; Hu, Q.; Xu, F.; Cao, X.; You, J. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohyd. Polym. 2013, 92(2), 1921–1927.

    Article  CAS  Google Scholar 

  15. Hu, X.; Xu, C.; Gao, J.; Yang, G.; Geng, C.; Chen, F. Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos. Sci. Technol. 2013, 78(2), 63–68.

    Article  CAS  Google Scholar 

  16. Cui, S.; Li, L.; Wang, Q. Enhancing glass transition temperature and mechanical properties of poly(propylene carbonate) by intermacromolecular complexation with poly(vinyl alcohol). Compos. Sci. Technol. 2016, 127, 177–184.

    Article  CAS  Google Scholar 

  17. Seo, J.; Jeon, G.; Jang, E. S.; Khan, S. B.; Han, H. Preparation and properties of poly(propylene carbonate) and nanosized zno composite films for packaging applications. J. Appl. Polym. Sci. 2011, 122(2), 1101–1108.

    Article  CAS  Google Scholar 

  18. Song, P.; Xiao M.; Du, F.; Wang, S.; Gan, L.; Liu, G. Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride. J. Appl. Polym. Sci. 2008, 109(6), 4121–4129.

    Article  CAS  Google Scholar 

  19. Wang, S., Du, L., Zhao, X., Meng, Y., Tjong, S. Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide. J. Appl. Polym. Sci. 2010, 85(11), 2327–2334.

    Article  CAS  Google Scholar 

  20. Li, Z.; Li, W.; Zhang, H.; Dong, L. Thermal, rheological and mechanical properties of poly(propylene carbonate)/methyl methacrylate-butadiene-styrene blends. Iran. Polym. J. 2015, 24(10), 861–870.

    Article  CAS  Google Scholar 

  21. Zhou, L.; Zhao, G.; Jiang, W. Effects of catalytic transesterification and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends. Ind. Eng. Chem. Res. 2016, 55(19), 5565–5573.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Peng, Y.; Liu, W.; Zeng, G.; Li, X.; Yan, X. Study on the mechenical properties of PPC/PLA blends modified by poss. Adv. Mater. Res. 2013, 741, 28–32.

    Article  CAS  Google Scholar 

  23. Gao, J.; Fu, Q.; Bai, H.; Zhang, Q. Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polym. Lett. 2012, 6(11), 860–870.

    Article  CAS  Google Scholar 

  24. Yao, M.; Deng, H.; Mai, F.; Wang, K. Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym. Lett. 2011, 5(11), 937–949.

    Article  CAS  Google Scholar 

  25. Hwang, S. W.; Park, D. H.; Kang, D. H.; Lee, S. B.; Shim, J. K. Reactive compatibilization of poly(L-lactic acid)/poly(propylene carbonate) blends: thermal, thermomechanical, and morphological properties. J. Appl. Polym. Sci. 2016, 133(18), DOI: 10.1002/APP.43388

    Google Scholar 

  26. Yuan, D.; Xu, C.; Chen, Z.; Chen, Y. Crosslinked bicontinuous biobased polylactide/natural rubber materials: super toughness, “net-like”-structure of NR phase and excellent interfacial adhesion. Polym. Test 2014, 38, 73–80.

    Article  CAS  Google Scholar 

  27. Xu, P.; Ma, P.; Cai, X.; Song, S.; Zhang, Y.; Dong, W. Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances. Eur. Polym. J. 2016, 84, 1–12.

    Article  CAS  Google Scholar 

  28. Raidt, T.; Hoeher, R.; Katzenberg, F.; Tiller, J. C. Chemical cross-linking of polypropylenes towards new shape memory polymers. Macromol. Rapid Commun. 2015, 36(8), 744–749.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y.; Zhu, G.; Tang, Y.; Xie, J.; Liu, T.; Liu, Z. Mechanical and shape memory behavior of chemically cross-linked SBS/LDPE blends. J. Polym. Res. 2014, 21(4), 1–10.

    Google Scholar 

  30. Ma, P.; Cai, X.; Zhang, Y.; Wang, S.; Dong, W.; Chen, M.; Lemstra, P. J. In situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 2014, 102(2), 145–151.

    Article  CAS  Google Scholar 

  31. Akos, N. I.; Wahit, M. U.; Mohamed, R.; Yussuf, A. A. Preparation, characterization, and mechanical properties of poly(ε-caprolactone)/polylactic acid blend composites. Polym. Compos. 2013, 34(5), 763–768.

    Article  CAS  Google Scholar 

  32. Rytlewski, P.; Żenkiewicz, M.; Malinowski, R. Influence of dicumyl peroxide content on thermal and mechanical properties of polylactide. Int. Polym. Proc. 2013, 26(5), 580–586.

    Article  CAS  Google Scholar 

  33. Lim, S. W.; Choi, M. C.; Jeong, J. H.; Park, E. Y.; Ha, C. S. Toughening poly(lactic acid) (PLA) through reactive blending with liquid polybutadiene rubber (LPB). Compos. Interface. 2016, 23(8), 807–818.

    Article  CAS  Google Scholar 

  34. Agarwal, M.; Koelling, K. W.; Chalmers, J. J. Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol. Prog. 1998, 14(3), 517–526.

    Article  CAS  PubMed  Google Scholar 

  35. Fei, B.; Chen, C.; Peng, S.; Zhao, X.; Wang, X.; Dong, L. FTIR study of poly(propylene carbonate)/bisphenol A blends. Polym. Int. 2010, 53(12), 2092–2098.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51503117) and the Innovation Foundation for Graduate Students of Shandong University of Science and Technology, China (No. SDKDYC170334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Ping Zhou or Li-Fen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, SX., Yu, CX., Chen, XY. et al. Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide. Chin J Polym Sci 36, 783–790 (2018). https://doi.org/10.1007/s10118-018-2065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2065-3

Keywords

Navigation