Skip to main content
Log in

Electrochemical dissolution and passivation of nickel powder randomly dispersed in a graphite + polypropylene matrix

  • OriginalPaper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel powder (10% in weight) randomly dispersed in a graphite (40%) + polypropylene (50%) matrix was studied as a composite electrode in a sulphuric-sulphate acid medium by means of voltammetry and Electrochemical Impedance Spectroscopy (EIS). Under voltammetric conditions, this thermoplastic material shows an electrochemical behaviour similar to nickel metal. However, under EIS measurement conditions the electrodissolution behaviour of the nickel powder is partially limited by the diffusion of the anions in the electrolyte in order to electroneutralize the excess of electrogenerated positive charge. The low frequency range of the measured impedance spectra can be interpreted as a parallel arrangement of a capacitive and a Warburg impedance, instead of a CPE element initially considered in the fitting. Values for CPE exponents lower than 0.85 are interpreted as a competition between a capacitive/transport contribution to the overall impedance response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Kim S.G., Yoon S.P., Han J., Nam S.W., Lim T.H., Oh I.H., Hong S.A. (2004) Electrochim. Acta 49:3081

    Article  CAS  Google Scholar 

  2. Rashkova V., Kitova S., Konstantinov I., Vitanov T. (2002) Electrochim. Acta 47: 1555

    Article  CAS  Google Scholar 

  3. Wang X., Luo H., Yang H., Sebastián P.J., Gamboa S.A. (2004) Int. J. Hydrogen Energy 29:967

    Article  CAS  Google Scholar 

  4. Martini E.M.A., Amaral S.T., Müller I.L. (2004) . Corros. Sci. 46:2097

    Article  CAS  Google Scholar 

  5. Marcus P. (1998) Electrochim. Acta 43:109

    Article  CAS  Google Scholar 

  6. Gildenpfennig A., Gramberg U., Hohlneicher G. (2003) Corros. Sci. 45:575

    Article  CAS  Google Scholar 

  7. Jouanneau A., Keddam M., Petit M.C. (1976) Electrochim. Acta 21:287

    Article  CAS  Google Scholar 

  8. Barbosa M.R., Bastos J.A., Gacía-Jareño J.J., Vicente F. (1998) Electrochim. Acta 44: 957

    Article  CAS  Google Scholar 

  9. Barbosa M.R., Real S.G., Vilche J.R., Arvía A.J. (1988) J. Electrochem. Soc. 135:1077

    Article  CAS  Google Scholar 

  10. Real S.G., Barbosa M.R., Vilche J.R., Arvía A.J. (1990) J. Electrochem. Soc. 137:1696

    Article  CAS  Google Scholar 

  11. Gregori J., Agrisuelas J., Giménez D., Peña M.P., García-Jareño J.J., Vicente F. (2003) Rev. Metal. 39:346

    Article  CAS  Google Scholar 

  12. Gregori J., García-Jareño J.J., Giménez D., Vicente F. (2005) J. Solid State Electr. 9:83

    Article  CAS  Google Scholar 

  13. Delmonte J. (1990) Metal-Polymer Composites. Van Nostrand Reinhold, New York, 163 p

    Google Scholar 

  14. Katz H.S., Milewski J.V. (1987) Handbook of Fillers for Plastics. Van Nostrand Reinhold, New York, 20 pp

    Google Scholar 

  15. Long J.T., Weber S.G. (1988) Anal. Chem. 60:2309

    Article  CAS  Google Scholar 

  16. Korfhage K.M., Ravichandran K., Baldwin R.P. (1984) Anal. Chem. 56:1514

    Article  CAS  Google Scholar 

  17. Tallman D.E., Petersen S.L. (1990) Electroanalysis 2:499

    Article  CAS  Google Scholar 

  18. Dailly A., Ghanbaja J., Willmann P., Billaud D. (2004) J. Appl. Electrochem. 34:885

    Article  CAS  Google Scholar 

  19. Jugovic B., Stevanovic J., Marksimovic M. (2004) J. Appl. Electrochem. 34:175

    Article  CAS  Google Scholar 

  20. Balaraju J.N., Narayanan T.S.N.S., Seshadri S.K. (2003) J. Appl. Electrochem. 33:807

    Article  CAS  Google Scholar 

  21. Navarro-Laboulais J., Trijueque J., García-Jareño J.J., Benito D., Vicente F. (1998) J. Electroanal. Chem. 444:173

    Article  CAS  Google Scholar 

  22. Trijueque J., García-Jareño J.J., Navarro Laboulais J., Sanmatías A., Vicente F. (1999) Electrochim. Acta 45:789

    Article  CAS  Google Scholar 

  23. Sanmatías A., Benito D., Bastos J.A., Navarro-Laboulais J., García-Jareño J.J., Vicente F. (1999) International Journal of Inorganic Materials (Solid State Sci.) 1:361

    Google Scholar 

  24. Sanmatías A., Benito D., Bastos J.A., García-Jareño J.J., Vicente F. (1999) International Journal of Inorganic Materials (Solid State Sci.) 1:373–378

    Google Scholar 

  25. Navarro-Laboulais J., López J., Villanueva X., Benito , García-Jareño J.J., Vicente F. (2000) J. Electroanal. Chem. 484:33

    Article  CAS  Google Scholar 

  26. Navarro-Laboulais J., García-Jareño J.J., Vicente F. (2002) J. Electroanal. Chem. 536:11

    Article  CAS  Google Scholar 

  27. Beaunier L., Keddam M., García-Jareño J.J., Vicente F., Navarro-Laboulais J. (2004) J. Electroanal. Chem. 566:159

    Article  CAS  Google Scholar 

  28. Macdonald J.R. (1992) Solid State Ionics 58:97

    Article  CAS  Google Scholar 

  29. Navarro-Laboulais J., Trijueque J., Vicente F., Scholl H. (1994) J. Electroanal. Chem. 379:159

    Article  Google Scholar 

  30. Navarro-Loboulais J., Trijueque J., Garcia-Jareño J.J., Vicente F. (1995) J. Electroanal. Chem. 399:115

    Article  Google Scholar 

  31. Navarro-Laboulais J., Trijueque J., Garcia-Jareño J.J., Vicente F. (1997) J. Electroanal. Chem. 422:91

    Article  CAS  Google Scholar 

  32. Ros T.G., van Dillen A.J., Geus J.W., Koningsberger D.C. (2002) Chem.-Eur. J. 8:1151

    Article  CAS  Google Scholar 

  33. Kerner Z., Pajkossy T. (1998) J. Electroanal. Chem. 448:139

    Article  CAS  Google Scholar 

  34. Kerner Z., Pajkossy T. (1998) Electrochim. Acta 46:207

    Article  Google Scholar 

  35. Keddam M., Mattos O.R., Takenouti H. (1981) J. Electrochem. Soc. 128:257

    Article  CAS  Google Scholar 

  36. Sato N., Okamoto G. (1964) J. Electrochem. Soc. 111:897

    Article  CAS  Google Scholar 

  37. Clerc C., Landolt D. (1988) Electrochim. Acta 33:859

    Article  CAS  Google Scholar 

  38. D’Alkaine C.V., Santanna M.A. (1998) J. Electroanal. Chem. 457:13

    Article  CAS  Google Scholar 

  39. Macdonald D.D., Biaggio S.R., Song H. (1992) J. Electrochem. Soc. 139:170

    Article  CAS  Google Scholar 

  40. Macdonald D.D., Liang R.Y., Pound B.G. (1987) J. Electrochem. Soc. 12:134

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology (Project CICyT-CTQ2004-08026/BQU) and Spanish Ministry of Environmental (Project 6.1-210/2005). J. Gregori acknowledges a Fellowship from the Spanish Education Ministery (FPU program). J.J. García-Jareño acknowledges the Spanish Ministry of Science and Technology for their position (“Ramón y Cajal” Program). The authors would like to express our gratitude for the valuable and interesting comments of Professor A.A. Wragg about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregori, J., García-Jareño, J., Negrete, F. et al. Electrochemical dissolution and passivation of nickel powder randomly dispersed in a graphite + polypropylene matrix. J Appl Electrochem 37, 241–248 (2007). https://doi.org/10.1007/s10800-006-9247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9247-3

Keywords

Navigation