Skip to main content

Advertisement

Log in

Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The treatment of bone loss due to different etiologic factors is difficult, and many techniques aim to improve repair, including a wide range of biomaterials and, recently, photobioengineering. This work aimed to assess, through Raman spectroscopy, the level of bone mineralization using the intensities of the Raman peaks of both inorganic (∼960, ∼1,070, and ∼1,077 cm−1) and organic (∼1,454 and ∼1,666 cm−1) contents of bone tissue. Forty rats were divided into four groups each subdivided into two subgroups according to the time of killing (15 and 30 days). Surgical bone defects were made on femur of each animal with a trephine drill. On animals of group Clot, the defect was filled only by blood clot; on group Laser, the defect filled with the clot was further irradiated. On animals of groups Biomaterial and Laser + Biomaterial, the defect was filled by biomaterial and the last one was further irradiated (λ780 nm, 70 mW, Φ ∼ 0.4 cm2, 20 J/cm2 session, 140 J/cm2 treatment) in four points around the defect at 48-h intervals and repeated for 2 weeks. At both 15th and 30th day following killing, samples were taken and analyzed by Raman spectroscopy. At the end of the experimental time, the intensities of both inorganic and organic contents were higher on group Laser + Biomaterial. It is concluded that the use of laser phototherapy associated to biomaterial was effective in improving bone healing on bone defects as a result of the increasing deposition of calcium hydroxyapatite measured by Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Protocol 08.2010.

  2. About 2 months old, average weight 295 ± 25 g.

  3. Labina®, Purina, São Paulo, Brazil.

  4. INSIGHT Equipamentos Ltda—Monte Alegre, Ribeirão Preto, São Paulo, Brazil.

  5. 0.04 ml/100 g of atropine subcutaneously.

  6. 10 % ketamine (0.1 mL/100 g—Cetamin®, Syntec, São Paulo, Brazil) + 2 % xylazin (0.1 mL/100 g; Xilazin®, Syntec, São Paulo, Brazil).

  7. SIN, São Paulo, Brazil.

  8. NSK, Tochigi, Japan.

  9. Driller 600®, SIN, São Paulo, SP, Brazil.

  10. Pentabiotico®, 0.2 ml; Fort Dodge Animal Health, Overland Park, KS, USA.

  11. TwinFlex Evolution®, MMOptics, São Carlos, São Paulo, Brazil; λ780 nm, 70 mW, Φ ∼ 0.4 cm2, 20 J/cm2.

  12. Power Meter Thorlabs PM30-121, Thorlabs GmbH, Munich, Germany.

  13. Insight Equipamentos, model EB 248, Ribeirão Preto, SP, Brazil.

  14. SIN-DRILLER 600 BML, São Paulo, SP, Brazil.

  15. Andor Technology, model Shamrock SR-303i®, Belfast, Northern Ireland.

  16. B&W TEK, model BRM-785-0.30-100-0.22.s, Newark, DE, USA.

  17. B&W TEK, model BAC-100-785, Newark, DE, USA.

  18. Andor Technology, model IDUs® DU401A-BR-DD, Belfast, Northern Ireland.

  19. Andor Technology, Solis (i) software, Belfast, Northern Ireland.

  20. Intensity correction and wavenumber calibration.

  21. Oriel Instruments, model 63358, Strattford, CT, USA.

  22. The Mathworks, Newark, NJ, USA.

  23. Minitab, Belo Horizonte, MG, Brazil.

References

  1. Prolo DJ (1990) Biology of bone fusion. Clin Neurosurg 36:135–146

    CAS  PubMed  Google Scholar 

  2. Recker RR (1992) Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven, New York, pp 219–240

    Google Scholar 

  3. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10(4):7–10

    Article  Google Scholar 

  4. Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178

    Article  CAS  PubMed  Google Scholar 

  5. Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L Jr (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95(4):1041–1047

    Article  PubMed  Google Scholar 

  6. Lopes CB, Pacheco MTT, Silveira L Jr, Cangussu MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: A Raman spectroscopic study. J Biomed Mater Res A 4(4):1257–63

    Google Scholar 

  7. Torres CS, Santos JN, Monteiro JSC, Gomes PTCC, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  8. Lopes CB, Pinheiro ALB, Sathaiah S, Silva NS, Salgado MC (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning eletronic microscopy study in rabbits. Photomed Laser Surg 25:96–101

    Article  CAS  PubMed  Google Scholar 

  9. Pinheiro ALB, Oliveira MG, Martins PPM, Ramalho LMP, Oliveira MAM, Novaes A Jr, Nicolau RA (2001) Biomodulatory effects of LLLT on bone regeneration. Laser Ther 13:73–79

    Article  Google Scholar 

  10. Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenos bone graft. Photomed Laser Surg 24:38–44

    Article  PubMed  Google Scholar 

  11. Pinheiro ALB, Gerbi MEMM, Limeira Junior FA, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infrared laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240

    Article  PubMed  Google Scholar 

  12. Gerbi MEMM, Marques AMC, Ramalho LMP, Ponzi EA, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60

    Article  PubMed  Google Scholar 

  13. Pinheiro ALB, Gerbi MEM, Ponzi EAC, Ramalho LMP, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26:167–174

    Article  CAS  PubMed  Google Scholar 

  14. Gerbi MEMM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317

    Article  Google Scholar 

  15. Gerbi ME, Pinheiro ALB, Marzola C, Limeira Júnior FA, Ramalho LMP, Ponzi EAC, Soares AO, Carvalho LC, Lima HV, Gonçalves TO (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388

    Article  PubMed  Google Scholar 

  16. Lopes CB, Pacheco MT, Silveira Junior L, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89(2–3):125–30

    Article  CAS  PubMed  Google Scholar 

  17. Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signalling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80:366–72

    Article  CAS  PubMed  Google Scholar 

  18. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59

    Article  CAS  PubMed  Google Scholar 

  19. Kavukcuoglu NB, Patterson-Buckendahl P, Mann A (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed 2:254–348

    Article  Google Scholar 

  20. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481

    Article  CAS  PubMed  Google Scholar 

  21. Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435

    Article  CAS  Google Scholar 

  22. Penel G, Cau E, Delfosse C, Rey C, Hardouin JJ, Delecourt C, Lemaitre J, Leroy G (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Raman studies of calcium phosphate biomaterials. Dent Med Probl 40(1):37–43

    Google Scholar 

  23. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  PubMed Central  PubMed  Google Scholar 

  24. Okagbare PI, Begun D, Tecklenburg M, Awonusi A, Goldstein SA, Morris MD (2012) Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality. J Biomed Opt 17(9):1–3, 090502

    Article  Google Scholar 

  25. Awonusi A, Morris MD, Tecklenburg MMJ (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52

    Article  CAS  PubMed  Google Scholar 

  26. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectros Rev 42(5):493–541

    Article  CAS  Google Scholar 

  27. Lin SY, Li MJ, Cheng WT (2007) FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectros 21:1–30

    Article  Google Scholar 

  28. Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17(7):077003

    Article  PubMed  Google Scholar 

  29. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430

    Article  CAS  PubMed  Google Scholar 

  30. Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GTS, Ramos TA, Gonzalez TA, Silva LN, Barbosa AFS, Silveira-Junior L (2012) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci. doi:10.1007/s10103-012-1096-1

    Google Scholar 

  31. Carvalho FB, Aciole GTS, Aciole JMS, Silveira-Junior L, Santos JN, Pinheiro ALB (2011) Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopic study. Proceedings – SPIE 7887:7887OT-1–7887OT-6

    Google Scholar 

  32. Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FAA, Cangussú MCT, Silveira-Junior L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration and miniplates. Photomed Laser Surg 28:89–97

    Article  CAS  Google Scholar 

  33. Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of Laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98(2):212–21

    Article  PubMed  Google Scholar 

  34. Lopes CB, Pinheiro ALB, Sathaiah S, Martins MC (2005) Infrared laser light reduces loading time of dental implants: a Raman Spectroscopic study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  35. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    Article  CAS  PubMed  Google Scholar 

  36. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268

    Article  CAS  PubMed  Google Scholar 

  37. Cameron MH, Perez D, Otano Lata S (1999) Electromagnetic radiation in physical agents. In: Cameron MH (ed) Rehabilitation, from research to practice. WB Saunders, Philadelphia, pp 303–344

    Google Scholar 

  38. Karu TI (1989) Molecular mechanisms of the therapeutic effects low intensity Laser radiation. Lasers Life Sci 2:53–74

    Google Scholar 

  39. Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9:497–505

    Article  CAS  PubMed  Google Scholar 

  40. Passarella S, Casamassima E, Quagliariello E, Caretto G, Jirillo E (1985) Quantitative analysis of lymphocyte–Salmonella interaction and effects of lymphocyte irradiation by He–Ne Laser. Biochem Biophys Res Commun 130:546–552

    Article  CAS  PubMed  Google Scholar 

  41. Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:101–114

    Google Scholar 

  42. Tang XM, Chai BP (1986) Effect of CO2 laser irradiation on experimental fracture healing: a transmission electron microscopic study. Lasers Surg Med 6(3):346–352

    Article  CAS  PubMed  Google Scholar 

  43. Motomura K (1984) Effects of various laser irradiation on callus formation after osteotomy. Nippon Reza Igakkai Shi (J Japan Soc for Laser Med) 4(1):195–196

    Google Scholar 

  44. Trelles MA, Mayayo E (1987) Bone fracture consolidate faster with low power Laser. Lasers Surg Med 7:36–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luiz B. Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, L.G.P., Marques, A.M.C., Barbosa, A.F.S. et al. Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser. Lasers Med Sci 29, 1539–1550 (2014). https://doi.org/10.1007/s10103-013-1297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1297-2

Keywords

Navigation