Skip to main content
Log in

Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The shape of irregular particles has significant influence on micro- and macro-scopic behaviour of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump’s volume to the original particle’s volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump \(<30\)), which implies the possible optimal resolution to capture the mechanical behaviour of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amberger, S., Friedl, M., Goniva, C., Pirker, S., Kloss, C.: Approximation of objects by spheres for multisphere simulations in DEM. Progress Comput. Fluid Dyn. 12, 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beatini, V., Royer-Carfagni, G., Tasora, A.: A regularized non-smooth contact dynamics approach for architectural masonry structures. Comput. Struct. 187, 88–100 (2017)

    Article  Google Scholar 

  3. Bertrand, G., Couprie, M.: Powerful parallel and symmetric 3D thinning schemes based on critical kernels. J. Math. Imaging Vis. 48, 134–148 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bertrand, G., Couprie, M.: Skeletonization: theory, methods and applications. In: Saha, P., Borgefors, G., Sanniti di Baja, G., (eds.) Parallel Skeletonization Algorithms in the Cubic Grid Based on Critical Kernels, pp. 181–210 (2017)

  5. Blum, H., Nagel, R.: Shape description using weighted symmetric axis features. Pattern Recognit. 10, 167–180 (1978)

    Article  Google Scholar 

  6. Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Trans. Graph. 23, 1–26 (2004)

    Article  Google Scholar 

  7. Cleary, P.W.: Large scale industrial DEM modelling. Eng. Comput. 21, 169–204 (2004)

    Article  Google Scholar 

  8. Cleary, P.W., Hilton, J.E., Sinnott, M.D.: Modelling of industrial particle and multiphase flows. Powder Technol. 134, 232–252 (2017)

    Article  Google Scholar 

  9. Cleary, P.W., Prakash, M., Sinnott, M.D., Rudman, M., Das, R.: Particle-based methods. In: Ohate, E., Owen, R. (eds.) Large Scale Simulation of Industrial, Engineering and Geophysical Flows Using Particle Methods, vol. 25. Springer, Dordrecht, Chap, pp. 89–111 (2011)

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Boston (2009)

    MATH  Google Scholar 

  11. Coumans, E.: Bullet 2.83 Physics SDK Manual (2015)

  12. Cundall, P.A.: Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. 25, 107–116 (1988)

    Article  Google Scholar 

  13. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  14. Deen, N.G., van Sint, Annaland M., van der Hoef, M.A., Kuipers, J.A.M.: Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 62, 28–44 (2007)

    Article  Google Scholar 

  15. Dong, K.J., Wang, C.C., Yu, A.B.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)

    Article  Google Scholar 

  16. Eaton, J. W., Bateman, D., Hauberg, S., Wehbring, R.: A high-level interactive language for numerical computations, Edition 4 for Octave version 4.2.1. 2017. https://octave.org/octave.pdf

  17. Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann Publishers, Burlington (2005)

    Google Scholar 

  18. Ferellec, J.-F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010)

    Article  Google Scholar 

  19. Garcia, X., Latham, J.-P., Xiang, J., Harrison, J.P.: A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Geotechnique 80(2), 779–784 (2009)

    Article  Google Scholar 

  20. Ghosh, M., Amato, N.M., Lu, Y., Lien, J.-M.: Fast approximate convex decomposition using relative concavity. Comput. Aid. Des. 45, 494–504 (2013)

    Article  MathSciNet  Google Scholar 

  21. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. J. Robot. Autom. 4, 193–203 (1988)

    Article  Google Scholar 

  22. Greenshields, C.J.: OpenFOAM User’s Guide. English. Version 5.0. OpenFOAM Foundation Ltd. July 24 (2017)

  23. Hanley, K.J., O’Sullivan, C.: Analytical study of the accuracy of discrete element simulations. Int. J. Numer. Methods. Eng. 109, 29–51 (2017)

    Article  MathSciNet  Google Scholar 

  24. Homier, D., Wirtz, S., Kruggel-Emden, H., Scherer, V.: Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: influence on temporal force evolution for multiple contacts. Powder Technol. 208, 643–656 (2011)

    Article  Google Scholar 

  25. Hohner, D., Wirtz, S., Scherer, V.: A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method. Powder Technol. 226, 16–28 (2012)

    Article  Google Scholar 

  26. Hohner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol. 253, 256–265 (2014)

    Article  Google Scholar 

  27. Hohner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method. Powder Technol. 278, 286–305 (2015)

    Article  Google Scholar 

  28. Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Trans. Graph. 15, 179–210 (1996)

    Article  Google Scholar 

  29. Kawamoto, R., Ando, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Progress Comput. Fluid Dyn. 12, 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  31. Klusera, L., Biagiob, C.D., Kleiberc, P.D., Formentib, P., Grassiand, V.H.: Optical properties of non-spherical desert dust particles in the terrestrial infrared—an asymptotic approximation approach. J. Quant. Spectrosc. Radiat. Transf. 178, 209–223 (2016)

    Article  ADS  Google Scholar 

  32. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Force model considerations for glued-sphere discrete element method simulations. Chem. Eng. Sci. 64, 3466–3475 (2009)

    Article  Google Scholar 

  33. Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behaviour. Chem. Eng. Sci. 63, 1523–1541 (2008)

    Article  Google Scholar 

  34. Lee, Y., Fang, C., Tsou, Y.R., Lu, L.S., Yang, C.T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11, 307–315 (2009)

    Article  Google Scholar 

  35. Li, C.Q., Xu, W.J., Meng, Q.S.: Multi-sphere approximation of real particles for DEM simulation based on a modified greedy heuristic algorithm. Powder Technol. 286, 478–487 (2015)

    Article  Google Scholar 

  36. Lim, K.-W., Krabbenhoft, K., Andrade, J.E.: On the contact treatment of non-convex particles in the granular element method. Comput. Part. Mech. 1, 1257–275 (2014)

    Google Scholar 

  37. Lu, G., Third, J.R., Muller, C.R.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78, 226–235 (2012)

    Article  Google Scholar 

  38. Lu, G., Third, J.R., Muller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Article  Google Scholar 

  39. Ludewig, F., Vandewalle, N.: Strong interlocking of nonconvex particles in random packings. Phys. Rev. E 85, 051307 (2012)

    Article  ADS  Google Scholar 

  40. Montanari, M., Petrinic, N., Barbieri, E.: Improving the gjk algorithm for faster and more reliable distance queries between convex objects. ACM Trans. Graph. 36, 30:1–30:17 (2017)

    Article  Google Scholar 

  41. Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15, 85–93 (2013)

    Article  Google Scholar 

  42. Nezami, E.G., Hashash, Y.M.A., Zhao, D.W., Ghaboussi, J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004)

    Article  Google Scholar 

  43. Palagyi, K., Nemeth, G.: A pair of equivalent sequential and fully parallel 3D surface-thinning algorithms. Discr. Appl. Math. 216, 348–361 (2017)

    Article  MathSciNet  Google Scholar 

  44. Phillips, C.L., Anderson, J.A., Huber, G., Glotzer, S.C.: Optimal filling of shapes. Phys. Rev. Lett. 108, 198304 (2012)

    Article  ADS  Google Scholar 

  45. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  Google Scholar 

  46. Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Part. Mech. 4, 101–118 (2017)

    Article  Google Scholar 

  47. Rakotonirina, A.D., Delenne, J.-Y., Wachs, A.: A parallel discrete element method to model collisions between non-convex particles. In: Powders and Grains 2017 - 8th International Conference on Micromechanics on Granular Media (2017)

  48. Sinnott, M.D., Cleary, P.W.: The effect of particle shape on mixing in a high shear mixer. Comput. Part. Mech. 3, 477–504 (2016)

    Article  Google Scholar 

  49. Taghavi, R.: Automatic clump generation based on mid-surface. In: Continuum and Distinct Element Numerical Modeling in Geomechanics, vol. 1. Melbourne, Australia (2011)

  50. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. In: Computer Graphics Forum, pp. 573–597 (2016)

    Article  Google Scholar 

  51. Toimil, A., Losada, I.J., Camus, P., Diaz-Simal, P.: Managing coastal erosion under climate change at the regional scale. Coast. Eng. 128, 106–122 (2017)

    Article  Google Scholar 

  52. Van den Bergen, G.: A fast and robust GJK implementation for collision detection of convex objects. J. Graph. GPU Game Tools 4, 7–25 (1999)

    Article  Google Scholar 

  53. Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape–Part I: Numerical model and validations. Powder Technol. 224, 374–389 (2012)

    Article  Google Scholar 

  54. Wang, L.B., Park, J.Y., Fu, Y.R.: Representation of real particles for DEM simulation using X-ray tomography. Constr. Build. Mater. 21, 338–346 (2007)

    Article  Google Scholar 

  55. Weller, R., Zachmann, G.: Inner sphere trees and their application to collision detection. In: Virtual Realities, Chap. 10. Springer (Dagstuhl), pp. 181–202 (2011)

    Google Scholar 

  56. Yang, Y., Wang, J.F., Cheng, Y.M.: Quantified evaluation of particle shape effects from micro-to-macro scales for non-convex grains. Particuology 25, 23–35 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Liang Yuan.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, FL. Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties. Granular Matter 21, 19 (2019). https://doi.org/10.1007/s10035-019-0874-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0874-x

Keywords

Navigation