Skip to main content
Log in

A packing algorithm for three-dimensional convex particles

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Simulation of granular particles is an important tool in many fields. However, simulation of particles of complex shapes remains largely out of reach even in two-dimension. One of the major hurdles is the difficulty in representing particles in an efficient, flexible, and accurate manner. By representing particles as convex polyhedrons which are themselves the intersection of a set of half spaces, we develop a method that allows one to efficiently carry out key operations, including particle–particle and particle–container wall overlapping detection, precise identification of the overlapping region, particle shifting, particle rotation, and others. The simulation of packing 1,000 particles into a container takes only a few minutes with this approach. We further demonstrate the potential of this approach with a simulation that re-generates the “Brazil nut” phenomenon by mixing and shaking particles of two different sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remond S., Gallias J.L., Mizrahi A.: Simulation of the packing of granular mixtures of non-convex particles and voids characterization. Granul. Matter 10(3), 157–170 (2008). doi:10.1007/s10035-007-0082-y

    Article  Google Scholar 

  2. Al-Raoush R., Alsaleh M.: Simulation of random packing of polydisperse particles. Powder Technol. 176(1), 47–55 (2007). doi:10.1016/j.powtec.2007.02.007

    Article  Google Scholar 

  3. Yu A.B., An X.Z., Zou R.P., Yang R.Y., Kendall K.: Self-assembly of particles for densest packing by mechanical vibration. Phys. Rev. Lett. 97(26), 265501 (2006). doi:10.1103/PhysRevLett.97.265501

    Article  ADS  Google Scholar 

  4. Fraige F.Y., Langston P.A., Chen G.Z.: Distinct element modelling of cubic particle packing and flow. Powder Technol. 186(3), 224–240 (2008). doi:10.1016/j.powtec.2007.12.009

    Article  Google Scholar 

  5. Abreu C.R.A., Tavares F.W., Castier M.: Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations. Powder Technol. 134(1–2), 167–180 (2003). doi:10.1016/S0032-5910(03)00151-7

    Article  Google Scholar 

  6. Song Y., Turton R., Kayihan F.: Contact detection algorithms for DEM simulations of tablet-shaped particles. Powder Technol. 161(1), 32–40 (2006). doi:10.1016/j.powtec.2005.07.004

    Article  Google Scholar 

  7. Jia X., Williams R.A.: A packing algorithm for particles of arbitrary shapes. Powder Technol. 120(3), 175–186 (2001). doi:10.1016/S0032-5910(01)00268-6

    Article  Google Scholar 

  8. Lu M., McDowell G.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69–80 (2007). doi:10.1007/s10035-006-0021-3

    Article  Google Scholar 

  9. Lim W.L., McDowell G.R.: Discrete element modelling of railway ballast. Granul. Matter 7(1), 19–29 (2005). doi:10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  10. Wang L., Park J.-Y., Fu Y.: Representation of real particles for DEM simulation using X-ray tomography. Construct. Build. Mater. 21(2), 338–346 (2007). doi:10.1016/j.conbuildmat.2005.08.013

    Article  Google Scholar 

  11. Lee Y., Yang C.T., Chien C.S.: A 3D ellipsoid-based model for packing of granular particles. Int. J. Comput. Appl. Technol. 17(3), 148–155 (2003). doi:10.1504/IJCAT.2003.000342

    Article  ADS  Google Scholar 

  12. Remond S., Gallias J.L.: A 3D semi-digital model for the placing of granular materials. Powder Technol. 148(1), 56–59 (2004). doi:10.1016/j.powtec.2004.09.026

    Article  Google Scholar 

  13. Matuttis H.G., Luding S., Herrmann H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1–3), 278–292 (2000). doi:10.1016/S0032-5910(99)00243-0

    Article  Google Scholar 

  14. De Pellegrin D.V., Stachowiak G.W.: Simulation of three-dimensional abrasive particles. Wear 258(1–4), 208–216 (2005). doi:10.1016/j.wear.2004.09.040

    Article  Google Scholar 

  15. Bezrukov A., Bargiel M., Stoyan D.: Statistical Analysis of Simulated Random Packings of Spheres. Particle Particle Syst. Characterization. 19(2), 111–118 (2002). doi:10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M

    Article  Google Scholar 

  16. Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  17. Cormen T.H., Leiserson C.E., Rivest R.L.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Nezami E.G., Hashash Y.M.A., Zhao D., Ghaboussi J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotechnics. 31(7), 575–587 (2004). doi:10.1016/j.compgeo.2004.08.002

    Article  Google Scholar 

  19. Rosato A., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Lett. 58(10), 1038 (1987). doi:10.1103/PhysRevLett.58.1038

    Article  ADS  MathSciNet  Google Scholar 

  20. Cleary P.W., Sawley M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002). doi:10.1016/S0307-904X(01)00050-6

    Article  MATH  Google Scholar 

  21. Castier M., Delgado Cuellar O., Tavares F.W.: Monte Carlo simulation of particle segregation. Powder Technol. 97(3), 200–207 (1998). doi:10.1016/S0032-5910(98)00009-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Fang, C., Tsou, YR. et al. A packing algorithm for three-dimensional convex particles. Granular Matter 11, 307–315 (2009). https://doi.org/10.1007/s10035-009-0133-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0133-7

Keywords

Navigation