Skip to main content
Log in

A novel type of multifunctional binder for improved cycle stability of lithium-sulfur battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to the introduction of porous carbon and rational design of cathode structure, the shuttle effect of polysulfide has been remarkably relieved. However, most reported carbon/sulfur composites exhibiting attractive performance are prepared through complex process, leading to a hard application in industry. Compared with a wide study on cathode material, relative few attentions have been paid on binder which is essential ingredient in cathode and play important role in enhancement of battery performance. Herein, we prepared novel binder (denoted as PAA-DA binder) through reaction of polyamic acid (PAA) and dopamine (DA). There are abundant carbonyl, acylamino, and hydroxide groups in the molecular structure of PAA-DA, which can form a strong interaction with the polysulfide, resulting in the alleviation of shuttle effect. The results of electrochemical test indicate that the PAA-DA binder effectively enhances the cycle stability of cathode at different current densities owning to the functional groups of PAA-DA significantly entrapping polysulfide through chemical interactions.

Schematic illustration of PAA-DA binder entrapping polysulfide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang H, Xu S, Tsai C, Li Y, Cui Y (2016) Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354(6315):1031–1036

    Article  CAS  PubMed  Google Scholar 

  2. Pan H, Huang X, Zhang R, Hoang TKA, Wen G (2018) Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium-sulfur battery. J Solid State Electrochem 22(11):3557–3568

    Article  CAS  Google Scholar 

  3. Yu Q, Luo R, Bai X, Kim JK, Luo Y (2018) Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. J Solid State Electrochem 22(3):849–858

    Article  CAS  Google Scholar 

  4. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X (2016) Nanostructured positive electrode materials for post-Lithium ion batteries. Energy Environ Sci 9(12):3570–3611

    Article  CAS  Google Scholar 

  5. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  6. Gu PY, Zhao Y, Xie J, Ali NB, Nie L, Xu ZJ, Zhang Q (2016) Improving the performance of lithium-sulfur batteries by employing polyimide particles as hosting matrixes. ACS Appl Mater Interfaces 8(11):7464–7470

    Article  CAS  PubMed  Google Scholar 

  7. Balach J, Singh HK, Gomoll S, Jaumann T, Klose M (2016) Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces 8(23):14586–14,595

    Article  CAS  PubMed  Google Scholar 

  8. Yuan G, Wang G, Wang H, Bai J (2015) A novel sulfur/carbon hollow microsphere yolk−shell composite as a high-performance cathode for lithium sulfur batteries. J Solid State Electrochem 19(4):1143–1149

    Article  CAS  Google Scholar 

  9. Jeddi K, Sarikhani K, Ghaznavi M, Zendehboodi S, Chen P (2015) Enhanced cycling performance of a high-energy and low-cost lithium–sulfur battery with a sulfur/hardwood charcoal composite cathode material. J Solid State Electrochem 19(4):1161–1169

    Article  CAS  Google Scholar 

  10. Zhang Z, Qu Y, Lai Y, Li J, Jiang S (2014) Activated carbon aerogels with high bimodal porosity for lithium/sulfur batteries. J Solid State Electrochem 18:545–551

    Article  CAS  Google Scholar 

  11. Chen J, Yan Y, Sun T, Qi Y, Li X (2014) Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries. RSC Adv 4(29):14904–14914

    Article  CAS  Google Scholar 

  12. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11(10):4288–4294

    Article  CAS  PubMed  Google Scholar 

  13. Tao X, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, Zu C, Cui Y (2016) Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7(1):11203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bao W, Su D, Zhang W, Guo X, Wang G (2016) 3D Metal carbide @ mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv Funct Mater 26(47):8746–8756

    Article  CAS  Google Scholar 

  15. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Alhassan SM, Pantelides ST (2014) Formation of large polysulfide complexes during the lithium-sulfur battery discharge. Phys Rev Appl 2(3):034004–034010

    Article  CAS  Google Scholar 

  17. Nara H, Tsuda S, Osaka T (2017) Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries. J Solid State Electrochem 21(7):1925–1937

    Article  CAS  Google Scholar 

  18. Li LY, Liu X, Zhu K, Yang K, Shan Z (2015) PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J Solid State Electrochem 19(11):3373–3379

    Article  CAS  Google Scholar 

  19. Zhang SG, Ueno K, Dokko K (2015) Recent advances in electrolytes for lithium-sulfur batteries. Adv Energy Mater 5(16):1500117–1500144

    Article  CAS  Google Scholar 

  20. Wang XW, Zhang Z, Qu YH, Li JJ (2014) Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J Power Sources 256:361–368

    Article  CAS  Google Scholar 

  21. Qiu YC, Li WF, Zhao W, Zhang YG (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14(8):4821–4827

    Article  CAS  PubMed  Google Scholar 

  22. Song J, Yu Z, Gordin ML (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16(2):864–870

    Article  CAS  PubMed  Google Scholar 

  23. Tan YB, Jia ZQ, Lou PL, Guo XX (2017) Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. J Power Sources 341:68–74

    Article  CAS  Google Scholar 

  24. Yuan G, Jin H, Jin Y, Wu L (2018) Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J Solid State Electrochem 22(3):693–703

    Article  CAS  Google Scholar 

  25. Fan M, An Y, Yin H, Sun W, Lin Z (2018) Self-assembled reduced graphene oxide/sulfur composite encapsulated by polyaniline for enhanced electrochemistry performance. J Solid State Electrochem 22(3):667–675

    Article  CAS  Google Scholar 

  26. Liang C, Zhang X, Zhao Y, Tan T, Zhang Y (2019) TiO2 nanoparticles anchored on three-dimensionally ordered macro/mesoporous carbon matrix as polysulfides’ immobilizers for high performance lithium/sulfur batteries. J Solid State Electrochem 23(2):565–572

    Article  CAS  Google Scholar 

  27. Zubair U, Anceschi A, Caldera F, Bodoardo S, Penazzi N (2017) Dual confinement of sulphur with rGO-wrapped microporous carbon from β-cyclodextrin nanosponges as a cathode material for Li–S batteries. J Solid State Electrochem 21(12):3411–3420

    Article  CAS  Google Scholar 

  28. Zhang X, Xie D, Wang D, Gu C, Tu J (2017) Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. J Solid State Electrochem 21(4):1203–1210

    Article  CAS  Google Scholar 

  29. Li X, Wang Y, Xu C, Pan L (2017) Mesoporous carbon/sulfur composite with N-doping and tunable pore size for high-performance Li-S batteries. J Solid State Electrochem 21(4):1101–1109

    Article  CAS  Google Scholar 

  30. Wang ZY, Dong YF, Wu HB, Qiu JS (2014) Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5(1):5002–5009

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Huang X, Zhang S, Hou Y (2018) Sulfur hosts against the shuttle effect. Small Methods 2(6):1700345

    Article  CAS  Google Scholar 

  32. Peng H, Huang J, Zhang Q (2017) Review on high loading and high energy lithium sulfur batteries. Adv Energy Mater 7(24):1700260

    Article  CAS  Google Scholar 

  33. Sohn H, Manivannan A, Wang DH (2014) Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: the effect of pore structure and morphology on their electrochemical performance as lithium/sulfur battery cathodes. ACS Appl Mater Interfaces 6(10):7596–7606

    Article  CAS  PubMed  Google Scholar 

  34. Hou X, Liu X, Lu Y, Kim JK, Luo Y (2017) Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries. J Solid State Electrochem 21(2):349–359

    Article  CAS  Google Scholar 

  35. Blanga R, Goor M, Burstein L, Shechtman I, Golodnitsky D (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20(12):3393–3404

    Article  CAS  Google Scholar 

  36. Yang X, Qian X, Jin L, Zhou Y, Xi X (2016) Mesoporous TiO2 nanosheet with a large amount of exposed 001 facets as sulfur host for high-performance lithium–sulfur batteries. J Solid State Electrochem 20(8):2161–2168

    Article  CAS  Google Scholar 

  37. Li X, Rao M, Li W (2016) Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium–sulfur battery. J Solid State Electrochem 20(1):153–161

    Article  CAS  Google Scholar 

  38. Li Q, Zhang Z, Zhang K, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2-sulfur composite cathode materials for lithium-sulfur batteries. J Solid State Electrochem 17(11):2959–2965

    Article  CAS  Google Scholar 

  39. Li L, Li LY, Guo XD, Chen YX, Tang Y (2013) Synthesis and electrochemical performance of sulfur-carbon composite cathode for lithium-sulfur batteries. J Solid State Electrochem 17(1):115–119

    Article  CAS  Google Scholar 

  40. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high energy lithium-sulfur batteries. Chem Soc Rev 45(20):5605–5634

    Article  CAS  PubMed  Google Scholar 

  41. Ogoke O, Wu G, Wang X, Casimir A, Ma L (2017) Effective strategies for stabilizing sulfur for advanced lithium sulfur batteries. J Mater Chem A 5(2):448–469

    Article  CAS  Google Scholar 

  42. Peng LL, Liu GB, Wang Y, Xu ZL, Liu H (2014) A comparison of sulfur loading method on the electrochemical performance of porous carbon/sulfur cathode material for lithium-sulfur battery. J Solid State Electrochem 18(4):935–940

    Article  CAS  Google Scholar 

  43. Doan TNL, Ghaznavi M, Konarov A, Zhang Y, Chen P (2014) Cyclability of sulfur/dehydrogenated polyacrylonitrile composite cathode in lithium-sulfur batteries. J Solid State Electrochem 18(1):69–76

    Article  CAS  Google Scholar 

  44. Liu X, Zhu K, Tian J, Tang Q, Shan Z (2014) Preparation of yolk-shell sulfur/carbon nanocomposite via an organic solvent route for lithium-sulfur batteries. J Solid State Electrochem 18(8):2077–2085

    Article  CAS  Google Scholar 

  45. Li G, Ling M, Ye Y, Li Z, Guo J, Yao Y, Zhu J, Lin Z, Zhang S (2015) Acacia Senegal inspired bifunctional binder for longevity of lithium sulfur batteries. Adv Energy Mater 5(21):1500878

    Article  CAS  Google Scholar 

  46. Ling M, Zhao H, Xiao XC, Shi FF, Wu MY, Qiu JX, Li S, Song XY, Liu G, Zhang SQ (2015) Low cost and environmentally benign crack blocking structures for long life and high power Si electrodes in lithium ion batteries. J Mater Chem A 3(5):2036–2042

    Article  CAS  Google Scholar 

  47. Ling M, Xu YN, Zhao H, Gu XX, Qiu JX, Li S, Wu MY, Song XY, Yan C, Liu G, Zhang SQ (2015) Dual-functional gum Arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185

    Article  CAS  Google Scholar 

  48. Santimetaneedol A, Tripuraneni R, Chester SA, Nadimpalli SPV (2016) Time-dependent deformation behavior of polyvinylidene fluoride binder: implications on the mechanics of composite electrodes. J Power Sources 332:118–128

    Article  CAS  Google Scholar 

  49. Chen W, Qian T, Xiong J, Yan CL (2017) A new type of multifunctional polar binder toward practical application of high energy lithium sulfur batteries. Adv Mater 29(12):1605160

    Article  CAS  Google Scholar 

  50. Liu J, Galpaya DGD, Yan L, Lin Z, Zhang S (2017) Exploiting a robust biopolymer network binder for an ultrahigh areal capacity Li-S battery. Energy Environ Sci 10(3):750–755

    Article  CAS  Google Scholar 

  51. Wu F, Ye Y, Chen RJ (2015) Systematic effect for an ultralong cycle lithium-sulfur battery. Nano Lett 15(11):7431–7439

    Article  CAS  PubMed  Google Scholar 

  52. Wang L, Wnag D, Zhang F, Jin J (2013) Interface chemistry guided long cycle life Li-S battery. Nano Lett 13(9):4206–4211

    Article  CAS  PubMed  Google Scholar 

  53. Ishida H, Wellinghoff S, Baer E (1980) Spectroscopic studies of poly[N,N’-bis (phenoxyphenyl)pyromellitimide]. 1. Structures of the polyimide and three model compounds. Macromolecules 13(4):826–834

    Article  CAS  Google Scholar 

  54. Mckittrick PT, Katon JE (1990) Infrared and Raman group frequencies of cyclic imides. Appl Spectrosc 44(5):812–817

    Article  CAS  Google Scholar 

  55. Salem HA, Rao CV, LMR A (2015) Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J Am Chem Soc 137(36):11542–11,545

    Article  PubMed  CAS  Google Scholar 

  56. Lin H, Yang L, Jiang X, Zhegn GW, Lee JY (2016) Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ Sci 10:1476

    Article  Google Scholar 

  57. Wang Y, Zhang Z, Jin Y (2017) Reduced polysulfide shuttle effect by using polyimide separators with ionic liquid-based electrolytes in lithium-sulfur battery. Electrochim Acta 255:109–117

    Article  CAS  Google Scholar 

  58. Zhang Z, Wang Y, Jin Y (2018) A multifunctional graphene oxide-Zn(II)-triazole complex for improved performance of lithium-sulfur battery at low temperature. Electrochim Acta 271:58–66

    Article  CAS  Google Scholar 

  59. Li B, Xiao Q, Luo Y (2017) A polymer enhanced sulfur/graphene aerogel as a no-slurry cathode for lithium–sulfur batteries. RSC Adv 7(86):54453–54459

    Article  CAS  Google Scholar 

  60. Yuan H, Huang JQ, Xiang R, Zhang Q (2018) A review of functional binders in lithium–sulfur batteries. Adv Energy Mater 8(31):1802107

    Article  CAS  Google Scholar 

  61. Yao PC, Zhu B, Yang Y (2018) PVDF/Palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett 18(10):6113–6120

    Article  CAS  PubMed  Google Scholar 

  62. Zhu SY, Wang YQ, Jin Y (2016) Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li–S batteries. ACS Appl Mater Interfaces 8(27):17253–17259

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2018BEM013), the National Natural Science Foundation of China (21503250), and the postdoctoral application research project of Qingdao city.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongcheng Jin or Hongtao Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Zhang, Z., Wang, Y. et al. A novel type of multifunctional binder for improved cycle stability of lithium-sulfur battery. J Solid State Electrochem 23, 1269–1278 (2019). https://doi.org/10.1007/s10008-019-04219-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04219-3

Keywords

Navigation