Skip to main content
Log in

Synthesis of mesoporous carbons and reduced graphene oxide and their influence on the cycling performance of rechargeable Li-O2 batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the lithium-oxygen (Li-O2) cell, the porous structure of the cathode is an important issue as well as challenge for its task of accommodating discharge products and providing free paths for oxygen. Clogging of pores and degradation of materials at the cathode affect the discharge rates and cycling performance of Li-O2 cell. Based on the study of five synthesized nanostructured porous carbons, namely, 2-D ordered mesoporous carbon C-15, 3-D ordered mesoporous carbons C-16 and C-16B with larger pores, hollow core mesoporous shell carbon (HCMSC), and reduced graphene oxide (rGO), we found that the type and pore structure of the carbon significantly affect the electrochemical performance of the cell. Both C-15 and rGO cathodes demonstrate good cell cycleability, while the HCMSC, with its interesting bimodal pore system, is not favorable for further improving cycling performance. The C-16B has similar morphology and electrolyte wettability of C-16. However, the former possesses larger pores, and such porosity significantly improves the cell cycleability up to 44 cycles, corresponding to an extended operation life of 850 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McClockey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) J Phys Chem Lett 3:997–1001

    Article  Google Scholar 

  2. Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2015) Adv Mater 27:784–800

    Article  CAS  Google Scholar 

  3. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  4. Balaish M, Kraytsberg A, Ein-Eli Y (2014) Phys Chem Chem Phys 16:2801–2822

    Article  CAS  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  6. Erickson EM, Markevich E, Salitra G, Sharon D, Hirshberg D, de la Llave E, Shterenberg I, Rozenman A, Frimer A, Aurbach D (2015) J Electrochem Soc 162:A2424–A2438

    Article  CAS  Google Scholar 

  7. Shui J-L, Okasinski JS, Kenesei P, Dobbs HA, Zhao D, Almer JD, Liu D-J (2013) Nat Commun 4:2255

    Article  Google Scholar 

  8. Zhang SS, Foster D, Read J (2010) J Power Sources 195:1235–1240

    Article  CAS  Google Scholar 

  9. Lu Y-C, Kwabi DG, Yao KPC, Harding JR, Zhou J, Zuin L, Shao-Horn Y (2011) Energy Environ Sci 4:2999–3007

    Article  CAS  Google Scholar 

  10. Padbury R, Zhang X (2011) J Power Sources 196:4436–4444

    Article  CAS  Google Scholar 

  11. Wang F, Xu Y-H, Luo Z-K, Pang Y, Wu Q-X, Liang C-S, Chen J, Liu D, Zhang X-H (2014) J Power Sources 272:1061–1071

    Article  CAS  Google Scholar 

  12. Thotiyl MMO, Freunberger SA, Peng Z, Bruce PG (2013) J Am Chem Soc 135:494–500

    Article  Google Scholar 

  13. Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) Science 337:563–566

    Article  CAS  Google Scholar 

  14. Li F, Tang DM, Jian Z, Liu D, Golberg D, Yamada A, Zhou H (2014) Adv Mater 26:4659–4664

    Article  CAS  Google Scholar 

  15. Li F, Tang D-M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H (2013) Nano Lett 13:4702–4707

    Article  Google Scholar 

  16. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang J-G (2011) Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  17. Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G (2012) Carbon 50:727–733

    Article  CAS  Google Scholar 

  18. Li Y, Wang J, Li X, Geng D, Banis MN, Li R (2012) Sun X Electrochem Comm 18:12–15

    Article  CAS  Google Scholar 

  19. Kitaura H, Zhou H (2012) Adv Energy Mater 2:889–894

    Article  CAS  Google Scholar 

  20. Ma Z, Yuan X, Li L, Ma ZF, Wilkinson DP, Zhang L, Zhang J (2015) Energy. Environ Sci 8:2144–2198

    CAS  Google Scholar 

  21. Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) ACS Nano 7:3532–3539

    Article  CAS  Google Scholar 

  22. Kim H, Lim HD, Kim J, Kang KJ (2014) Mater. Chem A 2:33–47

    CAS  Google Scholar 

  23. Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X (2011) Chem Commun 47:10016–10018

    Article  CAS  Google Scholar 

  24. Kichambare P, Kumar J, Rodrigues S, Kumar BJ (2011) Power Sources 196:3310–3316

    Article  CAS  Google Scholar 

  25. Qiao Y, Ye S (2016) J Phys Chem C 120:8033–8047

    Article  CAS  Google Scholar 

  26. Liu S, Wang Z, Yu C, Zhao Z, Fan X, Ling Z, Qiu J (2013) J Mater Chem A 1:12033–12037

    Article  CAS  Google Scholar 

  27. Meini S, Piana M, Beyer H, Schwammlein J, Gasteiger HA (2012) J Electrochem Soc 159:A2135–A2142

    Article  CAS  Google Scholar 

  28. Ma SB, Lee DJ, Roev V, Im D, Doo S-G (2013) J Power Sources 244:494–498

    Article  CAS  Google Scholar 

  29. Ding N, Chien SW, Hor TSA, Lum R, Zong Y, Liu Z (2014) J Mater Chem A 2:12433–12441

    Article  CAS  Google Scholar 

  30. Yang XH, He P, Xia YY (2009) Electrochem Comm 11:1127–1130

    Article  CAS  Google Scholar 

  31. Viswanathan V, Thygesen KS, Hummelshj JS, Norskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) J Chem Phys 135:214704

    Article  CAS  Google Scholar 

  32. Younesi R, Hahlin M, Treskow M, Scheers J, Johansson P, Edström K (2012) J Phys Chem C 116(35):18597–18604

    Article  CAS  Google Scholar 

  33. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) J Am Chem Soc 134:1093–1103

    Article  CAS  Google Scholar 

  34. Garcia-Araez N, Novák P (2013) J Solid State Electrochem 17:1793–1807

    Article  CAS  Google Scholar 

  35. Zhao D, Feng J, Huo Q, Melosh N, Fredirchson GH, Chemlka BF, Stucky G (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  36. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniee M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  37. Mesa M, Sierra L, Patarin J, Guth JL (2005) Solid State Sci 7:990–997

    Article  CAS  Google Scholar 

  38. Zeng J, Nair JR, Chen Q, Francia C, Bodoardo S, Penazzi N (2014) Chem Electro Chem 1:1382–1387

    CAS  Google Scholar 

  39. Lee HI, Kim JH, You DJ, Lee JE, Kim JM, Ahn WS, Pak C, Joo SH, Chang H, Seung D (2008) Adv Mater 20:757–762

    Article  CAS  Google Scholar 

  40. Buchel G, Unger KK, Matsumoto A, Tsutsumi K (1998) Adv Mater 10:1036–1038

    Article  Google Scholar 

  41. Monteverde Videla AHA, Ban S, Specchia S, Zhang L, Zhang J (2014) Carbon 76:386–400

    Article  CAS  Google Scholar 

  42. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  43. Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) Carbon 53:38–49

    Article  CAS  Google Scholar 

  44. Acik M, Carretero-González J, Castillo-Martínez E, Rogers DM, Guzman R, Baughman RH, Chabal YJ (2012) J Phys Chem C 116:24006–24015

    Article  CAS  Google Scholar 

  45. Liu SH, Chiang CC, Wu MT, Liu SB (2010) Int. J. Hydrogen Energy 35:8149–8154

    Article  CAS  Google Scholar 

  46. Guo W, Su F, Zhao XS (2005) Carbon 43:2423–2426

    Article  CAS  Google Scholar 

  47. Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, Sham T-K, Sun X, Ye S, Knights S (2011) Appl Surf Sci 257:9193–9198

    Article  CAS  Google Scholar 

  48. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  49. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  50. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) J Am Chem Soc 133:10878–10884

    Article  CAS  Google Scholar 

  51. Cheng CF, Lin YC, Cheng HH, Chen YC (2003) Chem Phys Lett 382:496–501

    Article  CAS  Google Scholar 

  52. Zeng J, Nair JR, Francia C, Bodoardo S, Penazzi N (2014) Solid State Ionics 262:160–164

    Article  CAS  Google Scholar 

  53. Zhai D, Wang H-H, Yang J, Lau KC, Li K, Amine K, Curtiss LA (2013) J Am Chem Soc 135:15364–15372

    Article  CAS  Google Scholar 

  54. Kang SY, Ong Y, Ceder G (2013) Chem Mater 25:3328–3336

    Article  CAS  Google Scholar 

  55. Gallant BM, Kwabi DG, Mitchell RR, Zhou J, Thompson CV, Shao-Horn Y (2013) Energy. Environ Sci 6:2518–2528

    CAS  Google Scholar 

  56. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) Energy. Environ Sci 4:2952–2958

    CAS  Google Scholar 

  57. Lu J, Li L, Park J-B, Sun Y-K, Wu F, Amine K (2014) Chem Rev 114:5611–5640

    Article  CAS  Google Scholar 

  58. Jiang J, Deng H, Li X, Tong S, He P, Zhou H (2016) ACS Appl. Mater Interfaces 8:10375–10382

    Article  CAS  Google Scholar 

  59. Bazuła PA, Lu A-H, Nitz J-J, Schuth F (2008) Microporous Mesoporous Mater 108:266–275

    Article  Google Scholar 

  60. Darmstadt H, Roy C, Kaliaguine S, Joo SH, Ryoo R (2003) Microporous Mesoporous Mater 60:139–149

    Article  CAS  Google Scholar 

  61. Kraytsberg A, Ein-Eli Y (2013) Nano Energy 2:468–480

    Article  CAS  Google Scholar 

  62. Xu JJ, Wang ZL, Xu D, Zhang LL, Zhang XB (2013) Nature Commun 4:2438

    Google Scholar 

  63. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the European Union Seventh Framework Programme (FP7/2007–2013) project STABLE (no. 314508). The authors sincerely thank Mr. Mauro Raimondo for the FESEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bodoardo.

Electronic supplementary material

ESM1

(DOC 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Amici, J., Monteverde Videla, A.H.A. et al. Synthesis of mesoporous carbons and reduced graphene oxide and their influence on the cycling performance of rechargeable Li-O2 batteries. J Solid State Electrochem 21, 503–514 (2017). https://doi.org/10.1007/s10008-016-3391-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3391-4

Keywords

Navigation