Skip to main content

Advertisement

Log in

Robot-assisted multi-level anterior lumbar interbody fusion: an anatomical study

  • Original Article - Spine - Other
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Minimally invasive surgical approaches still provide limited exposure. Access to the L2–L5 intervertebral discs during a single procedure is challenging and often requires repositioning of the patient and adopting an alternative approach.

Objectives

Investigate the windows to the L2–L5 intervertebral discs to assess the dimensions of the interbody implants suitable for the procedure and evaluate the feasibility of multi-level lumbar intervertebral disc surgery in robot-assisted surgery (RAS)

Methods

Sixteen fresh-frozen cadaveric specimens underwent a retroperitoneal approach to access the L2–L5 intervertebral discs. The L2–L3 to L4–L5 windows were defined as the distance between the left lateral border of the aorta (or nearest common iliac vessel) and the medial border of the psoas, measured in a static state and after gentle medial retraction of the vascular structures. Two living porcine specimens and one cadaveric specimen underwent da Vinci robot-assisted transperitoneal approach to expose the L2–L3 to L4–L5 intervertebral discs and perform multi-level discectomy and interbody implant placement.

Results

The L2–L3 to L4–L5 intervertebral disc windows significantly increased from a static to a retracted state (p < 0.05). The mean L2–L3, L3–L4, and L4–L5 windows measured respectively 20.1, 21.6, and 19.6 mm in the static state, and 27.2, 30.9, and 30.3 mm after gentle vascular retraction. The intervertebral windows from L2–L3 to L4–L5 were successfully exposed through an anterior transperitoneal approach with the da Vinci robot on the cadaveric and living porcine specimens, and interbody implants were inserted.

Conclusion

RAS appears to be feasible for a mini-invasive multi-level lumbar intervertebral disc surgery. The RAS procedure, longer and more expensive than conventional MIS approaches, should be reserved for elective patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALIF:

Anterior lumbar interbody fusion

BMI:

Body mass index

MIS:

Minimally invasive surgical

OLIF:

Oblique lumbar interbody fusion

RAS:

Robot-assisted surgery

References

  1. Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg Endosc 16(10):1389–1402

    Article  PubMed  CAS  Google Scholar 

  2. Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10(2):139–144

    Article  PubMed  Google Scholar 

  3. Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(2):242–253

    Article  Google Scholar 

  4. Beutler WJ, Peppelman WCJ, DiMarco LA (2013) The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine 38(4):356–363

    Article  PubMed  Google Scholar 

  5. Brau SA, Delamarter RB, Schiffman ML, Williams LA, Watkins RG (2004) Vascular injury during anterior lumbar surgery. Spine J 4(4):409–412

    Article  PubMed  Google Scholar 

  6. Chung SK, Lee SH, Lim SR et al (2003) Comparative study of laparoscopic L5–S1 fusion versus open mini-ALIF, with a minimum 2-year follow-up. Eur Spine J 12(6):613–617

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18

    Article  PubMed  Google Scholar 

  8. Dakwar E, Cardona RF, Smith DA, Uribe JS (2010) Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus 28(3):E8

    Article  PubMed  Google Scholar 

  9. Davis TT, Hynes RA, Fung DA et al (2014) Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 21(5):785–793

    Article  PubMed  Google Scholar 

  10. Davol P, Sumfest J, Rukstalis D (2006) Robotic-assisted laparoscopic retroperitoneal lymph node dissection. Urology 67(1):199

    Article  PubMed  Google Scholar 

  11. Epstein NE (2016) More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: a review. Surg Neurol Int 7(Suppl 3):S83

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garg J, Woo K, Hirsch J, Bruffey JD, Dilley RB (2010) Vascular complications of exposure for anterior lumbar interbody fusion. J Vasc Surg 51(4):946–950

    Article  PubMed  Google Scholar 

  13. Gettman MT, Blute ML, Chow GK, Neururer R, Bartsch G, Peschel R (2004) Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with daVinci robotic system. Urology 64(5):914–918

    Article  PubMed  Google Scholar 

  14. Hussain NS, Perez-Cruet MJ (2011) Complication management with minimally invasive spine procedures. Neurosurg Focus 31(4):E2

    Article  PubMed  Google Scholar 

  15. Inamasu J, et Guiot BH (2005) Laparoscopic anterior lumbar interbody fusion: a review of outcome studies. min-Minim Invasive Neurosurg 48(06):340–347

    Article  CAS  Google Scholar 

  16. Kaiser MG, Haid JR, Regis W, Subach BR et al (2002) Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery 51(1):97–105

    Article  PubMed  Google Scholar 

  17. Kim MJ, Ha Y, Yang MS, Yoon DH, Kim KN, Kim H et al (2010) Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir 152(4):675–679

    Article  PubMed  Google Scholar 

  18. Lanfranco AR, Castellanos AE, Desai JP et al (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Le TV, Burkett CJ, Deukmedjian AR, Uribe JS (2013) Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine 38:13–20

    Article  Google Scholar 

  20. Lee Z, Lee JYK, Welch WC, Eun D (2013) Technique and surgical outcomes of robot-assisted anterior lumbar interbody fusion. J Robot Surg 7(2):177–185

    Article  PubMed  CAS  Google Scholar 

  21. Liu JC, Ondra SL, Angelos P et al (2002) Is laparoscopic anterior lumbar interbody fusion a useful minimally invasive procedure? Neurosurgery 51(suppl_2):S2–155–S2–158

    Article  Google Scholar 

  22. Mcafee PC, Philipps FM, Andersson G et al (2010) Minimally invasive spine surgery. Spine 35(26S):S271–S273

    Article  PubMed  Google Scholar 

  23. Moller DJ, Slimack NP, Acosta FL, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31(4):E4

    Article  PubMed  Google Scholar 

  24. Mummaneni PV, Haid RW, Rodts GE (2004) Lumbar interbody fusion: state-of-the-art technical advances. Invited oblique lumbar interbody fusion in 179 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves. J Neurosurg Spine 1:24–30

    Article  PubMed  Google Scholar 

  25. Mundis GM, Akbarnia BA, Phillips FM (2010) Adult deformity correction through minimally invasive lateral approach techniques. Spine 35(suppl):312–321

    Article  Google Scholar 

  26. Obenchain TG (1991) Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg 1(3):145–149

    Article  PubMed  CAS  Google Scholar 

  27. Ohtori S, al. (2015) Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Asian Spine J 9(4):565–572

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ohtori S, al. (2015) Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J 56(4):1051–1059

    Article  PubMed  PubMed Central  Google Scholar 

  29. Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V et al (2013) Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine 38(21):1853–1861

    Article  PubMed  Google Scholar 

  30. Phillips FM, Cheng I, Rampersaud YR et al (2016) Breaking through the « glass ceiling » of minimally invasive spine surgery. Spine 41(suppl8):39–43

    Google Scholar 

  31. Shen FH, Samartzis D, Khanna AJ, Anderson DG (2007) Minimally invasive techniques for lumbar interbody fusions. Orthop Clin North Am 38(3):373–386

    Article  PubMed  Google Scholar 

  32. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6(2):89–97

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Boissonneau.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. The Institutional Animal Care and Use Committee approved the experimental protocol.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Spine - Other

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troude, L., Boissonneau, S., Malikov, S. et al. Robot-assisted multi-level anterior lumbar interbody fusion: an anatomical study. Acta Neurochir 160, 1891–1898 (2018). https://doi.org/10.1007/s00701-018-3621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-018-3621-x

Keywords

Navigation