Skip to main content

New Implants and Techniques in Minimally Invasive Spine Surgery: True Percutaneous Transforaminal Lumbar Interbody Fusion (pTLIF) with the Posterolateral Transforaminal Endoscopic Approach

  • Chapter
  • First Online:
Modern Thoraco-Lumbar Implants for Spinal Fusion

Abstract

The standard treatment for degenerative disk disease is interbody fusion by open discectomy. However, this technique requires open tissue dissection with the disadvantages of higher risk of infection, blood loss and a relatively long recovery period.

The posterolateral transforaminal approach is the standard approach in endoscopic spine surgery that allows direct access to the intervertebral disk with progressive tissue dilatation and no tissue dissection. In this chapter, we present the posterolateral approach to percutaneously insert an interbodyimplant (PEEK rigid cage, as well as B-Twin and Opticage expandable devices) into a lumbar disk. The implants can be inserted either as a stand-alone cage or with a posterior fixation with the goal to achieve a 360° interbody fusion. A typical indication for this technique are patients suffering from degenerative disk disease with or without spondylolisthesis in the lumbar spine. The percutaneous transforaminal posterolateral fusion approach is also helpful for revision surgery as it allows bypassing fibrous tissue generated by previous open surgery. In selected cases, central spinal stenosis can also be successfully addressed with this technique without additional open posterior decompression surgery, by employing an expandable device that opens the central canal with indirect decompression. t.

In a first part, we will review our previous experience with various interbody implants (PEEK rigid cage and the B-Twin expandable device) that were percutaneously inserted in the lumbar spine with the aforementioned endoscopic transforaminal approach. Based upon this experience, we will then explain the development process of a whole new set of instruments (Optiport) and a new expandable device (Opticage) to optimize and streamline percutaneous spine fusion surgery with a method that we call percutaneous transforaminal lumbar interbody fusion (pTLIF). We present a single-center, single-surgeon prospective study of 40 consecutive pTLIF cases using the Opticage expandable device. The outcome of this study showed a significant (p < 0.001) decrease between pre-operative and post-operative pain and disability scores for a mean follow-up of 33.4 ± 20.6 months. Our results show the efficacy of the posterolateral approach to safely and quickly achieve a percutaneous fusion of the lumbar spine and successfully treat patients with degenerative disk disease with or without spondylolisthesis up to grade 2 and in revision surgery. Our outcome does not differ from standard open surgery, while the advantages of the pTLIF procedure comprise less invasiveness with lower risk of bleeding and infection, as well as a shorter time to post-operative walking (median 6h) and hospital discharge (median post-operative time until hospital discharge 25h). This disruptive percutaneous fusion technique opens the way for ambulatory lumbar spinal fusion surgery in an out-patient setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shunwu F, Xing Z, Fengdong Z, Xiangqian F. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976). 2010;35:1615–20. doi:10.1097/BRS.0b013e3181c70fe3.

    Article  Google Scholar 

  2. Kim JS, Jung B, Lee SH. Instrumented minimally invasive spinal-transforaminal lumbar interbody fusion (mis-tlif); minimum 5-years follow-up with clinical and radiologic outcomes. J Spine Disord Tech. 2012; doi:10.1097/BSD.0b013e31827415cd.

  3. Morgenstern R. Transforaminal endoscopic stenosis surgery: a comparative study of laser and reamed foraminoplasty. Eur Musculoskeletal Rev. 2009;4:1–6.

    Google Scholar 

  4. Ahn Y, Lee SH, Park WM, et al. Posterolateral percutaneous endoscopic lumbar foraminotomy for L5-S1 foraminal or lateral exit zone stenosis. Technical note. J Neurosurg. 2003;99(3 Suppl):320–3.

    PubMed  Google Scholar 

  5. Hoogland T, van den Brekel-Dijkstra K, Schubert M, et al. Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 2008;33:973–8.

    Article  Google Scholar 

  6. Morgenstern R, Morgenstern C, Yeung AT. The learning curve in foraminal endoscopic discectomy: experience needed to achieve a 90% success rate. SAS J. 2007;1:100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruetten S, Komp M, Merk H, et al. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). 2008;33:931–9. doi:10.1097/BRS.0b013e31816c8af7.

    Article  Google Scholar 

  8. Morgenstern R, Morgenstern C. Assessment and selection of the appropriate individualized technique for endoscopic lumbar disc surgery. Clinical outcome of 400 patients. In: Menchetti PPM, editor. Minimally invasive surgery of the lumbar spine. London: Springer-Verlag; 2014. p. 107–20. doi:10.1007/ 978-1-4471-5280-4_5.

    Chapter  Google Scholar 

  9. Morgenstern R, Morgenstern C. Percutaneous transforaminal lumbar interbody fusion (pTLIF) with a posterolateral approach for the treatment of degenerative disk disease: feasibility and preliminary results no. IJSSURGERY-D-15-00047R1. Int J Spine Surg. 2015;9:Article 41. doi:10.14444/2041.

    Google Scholar 

  10. Yeung AT, Tsou PM. Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases. Spine (Phila Pa 1976). 2002;27:722–31.

    Article  Google Scholar 

  11. Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop Relat Res. 1983;174:127–32.

    Google Scholar 

  12. Ruetten S, Komp M, Godolias G. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic uniportal transforaminal approach-technique and prospective results of 463 patients. Spine (Phila Pa 1976). 2005;30:2570–8.

    Article  Google Scholar 

  13. Lee SH, Kang BU, Ahn Y, et al. Operative failure of percutaneous endoscopic lumbar discectomy: a radiologic analysis of 55 cases. Spine (Phila Pa 1976). 2006;31:E285–90.

    Article  Google Scholar 

  14. Choi G, Lee SH, Lokhande P, et al. Percutaneous endoscopic approach for highly migrated intracanal disc herniations by foraminoplastic technique using rigid working channel endoscope. Spine (Phila Pa 1976). 2008;33:E508–15.

    Article  Google Scholar 

  15. Morgenstern R, Morgenstern C. Endoscopically assisted transforaminal percutaneous lumbar interbody fusion. In: Lewandrowski KU, Lee SH, Iprenburg M, editors. Endoscopic spinal surgery. London: JP Medical Publishers; 2013. p. 127–34.

    Chapter  Google Scholar 

  16. Morgenstern R. Full endoscopic TLIF approach with percutaneous posterior transpedicular screw fixation in a case of spondylolisthesis grade I with L4–L5 central stenosis. J Crit Spine Cases. 2010;3:115–9.

    Google Scholar 

  17. Morgenstern R, Morgenstern C, Jané R, Lee SH. Usefulness of an expandable interbody spacer for the treatment of foraminal stenosis in extremely collapsed disks: preliminary clinical experience with the endoscopic posterolateral transforaminal approach. J Spinal Disord Tech. 2011;24:485–91.

    PubMed  Google Scholar 

  18. Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech. 2005;18:40–7.

    Article  PubMed  Google Scholar 

  19. Kim TY, Kang KT, Yoon DH, et al. Effects of lumbar arthrodesis on adjacent segments: differences between surgical techniques. Spine (Phila Pa 1976). 2012;37:1456–62.

    Article  Google Scholar 

  20. Davis R, Auerbach J, Bae H, Errico TJ. Can low-grade spondylolisthesis be effectively treated by either coflex interlaminar stabilization or laminectomy and posterior spinal fusion? Two-year clinical and radiographic results from the randomized, prospective, multicenter US investigational device exemption trial Spondylolisthesis treated with coflex stabilization of fusion. J Neurosurg Spine. 2013;19:174–84.

    Article  PubMed  Google Scholar 

  21. Syed H, Voyadzis JM. True percutaneous transforaminal lumbar interbody fusion: case illustrations, surgical technique, and limitations. J Neurol Surg A Cent Eur Neurosurg. 2016;77(4):344–53. doi:10.1055/s-0035-1558821. ISSN 2193-6315

    Article  PubMed  Google Scholar 

  22. Powers CJ, Podichetty VK, Isaacs RE. Placement of percutaneous pedicle screws without imaging guidance. Neurosurg Focus. 2006;20:E3.

    Article  PubMed  Google Scholar 

  23. Copay AG, Glassman SD, Subach BR, et al. Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J. 2008;8:968–74. doi:10.1016/j.spinee.2007.11.006.

    Article  PubMed  Google Scholar 

  24. Macnab I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J Bone Joint Surg Am. 1971;53:891–903.

    Article  CAS  PubMed  Google Scholar 

  25. Karikari IO, Isaacs RE. Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine (Phila Pa 1976). 2010;35(26 Suppl):S294–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Morgenstern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Morgenstern, R., Morgenstern, C. (2018). New Implants and Techniques in Minimally Invasive Spine Surgery: True Percutaneous Transforaminal Lumbar Interbody Fusion (pTLIF) with the Posterolateral Transforaminal Endoscopic Approach. In: Delfini, R., Landi, A., Mancarella, C., Gregori, F. (eds) Modern Thoraco-Lumbar Implants for Spinal Fusion. Springer, Cham. https://doi.org/10.1007/978-3-319-60143-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60143-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60142-7

  • Online ISBN: 978-3-319-60143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics