Skip to main content
Log in

Molecular analysis of 16 Turkish families with DHPR deficiency using denaturing gradient gel electrophoresis (DGGE)

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Dihydropteridine reductase (DHPR) catalyses the conversion of quinonoid dihydrobiopterin (qBH2) to tetrahydrobiopterin (BH4), which serves as the obligatory cofactor for the aromatic amino acid hydroxylases. DHPR deficiency, caused by mutations in the QDPR gene, results in hyperphenylalaninemia and deficiency of various neurotransmitters in the central nervous system, with severe neurological symptoms as a consequence. We have studied, at the clinical and molecular levels, 17 patients belonging to 16 Turkish families with DHPR deficiency. The patients were detected at neonatal screening for hyperphenylalaninemia or upon the development of neurological symptoms. To identify the disease causing molecular defects, we developed a sensitive screening method that rapidly scans the entire open reading frame and all splice sites of the QDPR gene. This method combines PCR amplification and “GC-clamping” of each of the seven exonic regions of QDPR, resolution of mutations by denaturing gradient gel electrophoresis (DGGE), and identification of mutations by direct sequence analysis. A total of ten different mutations were identified, of which three are known (G23D, Y150C, R221X) and the remaining are novel (G17R, G18D, W35fs, Q66R, W90X, S97fs and G149R). Six of these mutations are missense variants, two are nonsense mutations, and two are frameshift mutations. All patients had homoallelic genotypes, which allowed the establishment of genotypephenotype associations. Our findings suggest that DGGE is a fast and efficient method for detection of mutations in the QDPR gene, which may be useful for confirmatory DNA-based diagnosis, genetic counselling and prenatal diagnosis in DHPR deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams ES, Stanton VP (1992) Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. Methods Enzymol 212: 71–104

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Dhondt J (2000) International database of tetrahydrobiopterin deficiencies http://www.bh4.org/biodefl.html (accessed June 2000)

  • Blau N, Heizmann CW, Sperl W, Korenke GC, Hoffmann GF, Smooker PM, Cotton RG (1992) Atypical (mild) forms of dihydropteridine reductase deficiency: neurochemical evaluation and mutation detection. Pediatr Res 32: 726–730

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Thöny B, Heizmann CW, Dhondt JL (1993) Tetrahydrobiopterin deficiency: from phenotype to genotype. Pteridines 4: 1–10

    CAS  Google Scholar 

  • Blau N, Thöny B, Spada M, Ponzone A (1996) Tetrahydrobiopterin and inherited hyperphenylalaninemias. Turk J Pediatr 38: 19–35

    PubMed  CAS  Google Scholar 

  • Blau N, Thöny B, Dianzani I (2000) Database of mutations causing tetrahydrobiopterin deficiencies http://www.bh4.org/biomdb1. html (accessed June 2000)

  • Coşkun T, Özalp I, Tokatli A, Blau N, Niederwieser A (1993) Hyperphenylalaninaemia due to tetrahydrobiopterin deficiency: a report of 16 cases. J Inherit Metab Dis 16: 605–607

    Article  PubMed  Google Scholar 

  • Dahl HM, Hutchison W, McAdam W, Wake S, Morgan FJ, Cotton RGH (1987) Human dihydropteridine reductase: characterisation of a cDNA clone and its use in analysis of patients with dihydropteridine reductase deficiency. Nucleic Acids Res 15: 1921–1932

    Article  PubMed  CAS  Google Scholar 

  • Dianzani I, Howells DW, Ponzone A, Saleeba JA, Smooker PM, Cotton RG (1993) Two new mutations in the dihydropteridine reductase gene in patients with tetrahydrobiopterin deficiency. J Med Genet 30: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Dianzani I, de Sanctis L, Smooker PM, Gough TJ, Alliaudi C, Brusco A, Spada M, Blau N, Dobos M, Zhang H, Yang N, Ponzone A, Armarego WLF, Cotton RGH (1998) Dihydropteridine reductase deficiency: physical structure of the QDPR gene, identification of two new mutations and genotype-phenotype correlations. Hum Mutat 12: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Ferec C, Audrezet M, Mercier B, Guillermit H, Moullier P, QuereI, Verlingue C (1993) Detection of over 98% cystic fibrosis mutations in a Celtic population. Nat Genet 1: 188–191

    Article  Google Scholar 

  • Firgaira F, Cotton RGH, Danks DM (1981) Isolation and characterization of dihydropteridine reductase from human liver. Biochem J 197: 31–43

    PubMed  CAS  Google Scholar 

  • Firgaira FA, Cotton RGH, Danks DM, Fowler K, Lipson A, Yu JS (1983) Prenatal determination of dihydropteridine reductase in a normal fetus at risk for malignant hyperphenylalaninemia. Prenat Diagn 3: 7–11

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Henriksen KF, Güttier F (1993) Molecular analysis of phenylketonuria in Denmark: 99% of the mutations detected by denaturing gradient gel electrophoresis. Genomics 17: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Nedergaard T, Nielsen HJ, Olsen AC, Ahrenkiel V, Zeuthen J (1997) Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum Mutat 9: 348–355

    Article  PubMed  CAS  Google Scholar 

  • Henke W, Herdel K, Jung K, Schnorr D, Loening SA (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res 25: 3957–3958

    Article  PubMed  CAS  Google Scholar 

  • Kuhl P, Olek K, Wardenbach P, Grzeschik KH (1979) Assignment of a gene for human quinoid-dihydropteridine reductase (QDPR, EC 1.6.5.1) to chromosome 4. Hum Genet 53: 47–49

    Article  PubMed  CAS  Google Scholar 

  • Lerman LS, Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155: 482–501

    Article  PubMed  CAS  Google Scholar 

  • Lockyer J, Cook RG, Milstien S, Kaufman S, Woo SLC, Ledley FD (1987) Structure and expression of human dihydropteridine reductase. Proc Natl Acad Sci USA 84: 3329–3333

    Article  PubMed  CAS  Google Scholar 

  • Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155: 501–527

    Article  PubMed  CAS  Google Scholar 

  • Özalp I, Coşkun T, Tokatli A, Tokol S, Özgüc M, Koksal G, Erdem G, Yurdakok M (1995) Neonatal PKU screening in Turkey: 7 years experience in a developing country. Screening 4: 139–147

    Google Scholar 

  • Romstad A, Guldberg P, Blau N, Güttler F (1999) Single-step mutation analysis of the 6-pyruvoyltetrahydropterin synthase gene in patients with hyperphenylalaninemia. Clin Chem 45: 2102–2108

    PubMed  CAS  Google Scholar 

  • Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17: 8543–8551

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S, Eisensmith RC, Woo SLC (1995) The hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1015–1075

    Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Brenton D (1996) Hyperphenylalaninemias. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn metabolic diseases: diagnosis and treatment. Springer-Verlag, Berlin, pp 147–160

    Google Scholar 

  • Smith I, Hyland K, Kendall B (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherit Metab Dis 8: 39–45

    Article  PubMed  Google Scholar 

  • Smooker PM, Howells DW, Cotton RGH (1993) Identification and in vitro expression of mutations causing dihydropteridine reductase deficiency. Biochemistry 32: 6443–6449

    Article  PubMed  CAS  Google Scholar 

  • Smooker PM, Gough TJ, Cotton RGH, Alliaudi C, de Sanctis L, Dianzani I (1999) A series of mutations in the dihydropteridine reductase gene resulting in either abnormal RNA splicing or DHPR protein defects. Hum Mutat 13: 503–504

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Varughese KI, Xuong NH, Bray TL, Roche DJ, Whiteley JM (1993) The crystallographic structure of a human dihydropteridine reductase NADH binary complex expressed in Escherichia coli by a cDNA constructed from its rat homologue. J Biol Chem 268: 26836–26841

    PubMed  CAS  Google Scholar 

  • Tuncbilek E, Koc I (1994) Consanguineous marriage in Turkey and its impact on fertility and mortality. Ann Hum Genet 58: 321–329

    Article  PubMed  CAS  Google Scholar 

  • Varughese KI, Skinner MM, Whiteley JM, Matthews DA, Xuong NH (1992) Crystal structure of rat liver dihydropteridine reductase. Proc Natl Acad Sci USA 89: 6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Varughese KI, Xuong NH, Kiefer PM, Matthews DA, Whiteley JM (1994) Structural and mechanistic characteristics of dihydropteridine reductase: a member of the Tyr-(Xaa)3-Lys-containing family of reductases and dehydrogenases. Proc Natl Acad Sci USA 91: 5582–5586

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK, De Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochemistry 24: 1346–1357

    Article  CAS  Google Scholar 

  • Wierenga RK, Terpstra P, Hol WGJ (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz E, Cali F, Romano V, Özalp I, Cosşkun T, Tokatli A, Kalkanoğlu HS, Özgüc M (2000) Molecular basis of mild hyperphenylalaninemia in Turkey. J Inherit Metab Dis 23: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Zhang HP, Yang N, Armarego WLF (1996) In vitro mutagenesis of human dihydropteridine reductase at the active site and at altered sites found in the reductase of deficient children. Pteridines 7: 126–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming Güttler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romstad, A., Kalkanoğlu, H.S., Coşkun, T. et al. Molecular analysis of 16 Turkish families with DHPR deficiency using denaturing gradient gel electrophoresis (DGGE). Hum Genet 107, 546–553 (2000). https://doi.org/10.1007/s004390000407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004390000407

Keywords

Navigation