Skip to main content
Log in

Photostabilization mechanisms of the main wood photostabilizers from the heartwood extract in Acacia confusa: okanin and melanoxetin

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Flavonoids are secondary metabolites with abilities to reduce the thermal- and photoinduced degradation of polymeric materials. Previous studies indicated that the flavonoids in Acacia confusa heartwood had photostabilities that can reduce the photoinduced degradation of lignin in wood. Hence, the photostabilities and the photostabilization mechanisms of major flavonoids in A. confusa heartwood merit further study. This study demonstrates that the flavone (7,3′,4′-trihydroxy-5-methoxyflavone), flavonols (melanoxetin and 7,8,3′-trihydroxy-3,4′-dimethoxyflavone) and chalcone (okanin) in A. confusa heartwood have good UV absorptivity, singlet oxygen quenching ability and phenoxyl radical scavenging ability, in particular, the two most abundant flavonoids, melanoxetin and okanin. Additionally, okanin can quench excited lignin. Accordingly, these flavonoids can remove hazards induced during lignin photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 76(1):55–61

    Google Scholar 

  • Arai T, Norikane Y (1997) Direct observation of the photoinduced hydrogen atom transfer in 2′-hydroxychalcone. Chem Lett 26(4):339–340

    Article  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24(9):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23(12):1373–1380

    Article  CAS  Google Scholar 

  • Chang TC, Chang ST (2017) Multiple photostabilization actions of heartwood extract from Acacia confusa. Wood Sci Technol 51(5):1133–1153

    Article  CAS  Google Scholar 

  • Chang TC, Chang ST (2018) Wood photostabilization roles of the condensed tannins and flavonoids from the EtOAc fraction in the heartwood extract of Acacia confusa. Wood Sci Technol 52(3):855–871

    Article  CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Chang ST (2010a) Influences of extractives on the photodegradation of wood. Polym Degrad Stab 95:516–521

    Article  CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Lin HY, Chang ST (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym Degrad Stab 95:1518–1522

    Article  CAS  Google Scholar 

  • Chang TC, Lin HY, Wang SY, Chang ST (2014) Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polym Degrad Stab 105:42–47

    Article  CAS  Google Scholar 

  • Chang TC, Hsiao NC, Yu PC, Chang ST (2015) Exploitation of Acacia confusa heartwood extract as natural photostabilizers. Wood Sci Technol 49(4):811–823

    Article  CAS  Google Scholar 

  • Chou PT, Martinez ML, Cooper WC (1992) Direct evidence of excited-state intramolecular proton transfer in 2′-hydroxychalcone and photooxygenation forming 3-hydroxyflavone. J Am Chem Soc 114(12):4943–4944

    Article  CAS  Google Scholar 

  • Crestini C, D’Auria M (1997) Singlet oxygen in the photodegradation of lignin models. Tetrahedron 53(23):7877–7888

    Article  CAS  Google Scholar 

  • Fischer K, Beyer M (2000) Comparison of light-induced and heat-induced yellowing of pulp. Lenzing Ber 79:25–31

    CAS  Google Scholar 

  • García-Plazaola JI, Fernández-Marína B, Duke SO, Hernández A, López-Arbeloa F, Becerril JM (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

    Article  CAS  PubMed  Google Scholar 

  • Heitner C (1993) Light-induced yellowing of wood-containing papers. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials. American Chemistry Society, Washington, pp 2–22

    Chapter  Google Scholar 

  • Hon NS (1975) Formation of free radicals in photoirradiated cellulose. I. Effect of wavelength. J Polym Sci Polym Chem Ed 13(6):1347–1361

    Article  CAS  Google Scholar 

  • Hon DNS (1979) Photooxidative degradation of cellulose: reactions of the cellulosic free radicals with oxygen. J Polym Sci Polym Chem Ed 17(2):441–454

    Article  CAS  Google Scholar 

  • Hon DNS, Feist WC (1992) Hydroperoxidation in photo-irradiated wood surfaces. Wood Fiber Sci 24:448–455

    CAS  Google Scholar 

  • Hon DNS, Ifju G, Feist WC (1980) Characteristics of free radicals in wood. Wood Fiber Sci 12(2):121–130

    CAS  Google Scholar 

  • Hon DNS, Chang ST, Feist WC (1982) Participation of singlet oxygen in the photodegradation of wood surfaces. Wood Sci Technol 16(3):193–201

    Article  CAS  Google Scholar 

  • Huvaere K, Skibsted LH (2015) Flavonoids protecting food and beverages against light. J Sci Food Agric 95:20–35

    Article  CAS  PubMed  Google Scholar 

  • Kaneda K, Arai T (2003) Photoinduced hydrogen atom transfer in trans-1-(1′-hydroxy-2′-naphthyl)-3-(1-naphthyl)-2-propen-1-one. Photochem Photobiol Sci 2:402–406

    Article  CAS  Google Scholar 

  • Koontz JL, Marcy JE, O’Keefe SF, Duncan SE, Long TE, Moffitt RD (2010) Polymer processing and characterization of LLDPE films loaded with α-tocopherol, quercetin, and their cyclodextrin inclusion complexes. J Appl Polym Sci 117(4):2299–2309

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98(1):551–564

    Article  CAS  PubMed  Google Scholar 

  • Lanzalunga O, Bietti M (2000) Photo- and radiation chemical induced degradation of lignin model compounds. J Photochem Photobiol B 56(2–3):85–108

    Article  CAS  PubMed  Google Scholar 

  • Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers 7(6):1125–1144

    Article  CAS  Google Scholar 

  • McPhail DB, Hartley RC, Gardner PT, Duthie GG (2003) Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J Agric Food Chem 51(6):1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Morán Vieyra FE, Boggetti HJ, Zampini IC, Ordoñez RM, Isla MI, Alvarez RMS, De Rosso V, Mercadante AZ, Borsarelli CD (2009) Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav. Free Radic Res 43(6):555–564

    Article  CAS  Google Scholar 

  • Mukai K, Nagai S, Ohara K (2005) Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic Biol Med 39(6):752–761

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Ratzsch M, Schwanninger M, Steiner M, Zobl H (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. J Photochem Photobiol, B 69:97–105

    Article  CAS  Google Scholar 

  • Norikane Y, Itoh H, Arai T (2000) Control of the photoisomerization mode of carbon-carbon double bond by intramolecular hydrogen bond. One-way photoisomerization of 2′-hydroxychalcone induced by adiabatic intramolecular hydrogen atom transfer. Chem Lett 29(9):1094–1095

    Article  Google Scholar 

  • Norikane Y, Itoh H, Arai T (2002) Photochemistry of 2′-hydroxychalcone. One-way cis-trans photoisomerization induced by adiabatic intramolecular hydrogen atom transfer. J Phys Chem A 106(11):2766–2776

    Article  CAS  Google Scholar 

  • Norikane Y, Nakayama N, Tamaoki N, Arai T, Nagashima U (2003) Quantum chemical studies on photoinduced cis-trans isomerization and intramolecular hydrogen atom transfer of 2′-hydroxychalcone. J Phys Chem A 107(41):8659–8664

    Article  CAS  Google Scholar 

  • Pandey KK (2005) Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab 90:9–20

    Article  CAS  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108(7):1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) Component analysis of the fluorescence spectra of a lignin model compound. J Photochem Photobiol B 83(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samper MD, Fages E, Fenollar O, Boronat T, Balart R (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129(4):1707–1716

    Article  CAS  Google Scholar 

  • Schapiro I, Melaccio F, Laricheva EN, Olivucci M (2011) Using the computer to understand the chemistry of conical intersections. Photochem Photobiol Sci 10:867–886

    Article  CAS  PubMed  Google Scholar 

  • Sengupta PK, Kasha M (1979) Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68(2–3):382–385

    Article  CAS  Google Scholar 

  • Sisa M, Bonne SL, Ferreira D, van der Westhuizen JH (2010) Photochemistry of flavonoids. Molecules 15(8):5196–5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163(3):547–561

    Article  CAS  Google Scholar 

  • Tournaire C, Croux S, Maurette MT (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol B 19(3):205–215

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer D, Jansen MA, Llorens L, Morales LO, Neugart S (2017) UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support (NSC 102-2313-B-002-023-MY3) from the Ministry of Science and Technology Taiwan. We also appreciate Assistant Research Fellow Min-Jay Chung (the Experimental Forest, National Taiwan University), Associate Professor Ting-Feng Yeh and Ms. Mao-Ju Chang (School of Forestry and Resource Conservation, National Taiwan University) for the supports of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tzen Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, TC., Chang, ST. Photostabilization mechanisms of the main wood photostabilizers from the heartwood extract in Acacia confusa: okanin and melanoxetin. Wood Sci Technol 53, 335–348 (2019). https://doi.org/10.1007/s00226-019-01084-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-019-01084-1

Navigation