Skip to main content
Log in

Modelling and dynamical analysis of a DC–DC converter with coupled inductors

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The large-signal averaged model of a coupled-inductor double-boost converter is developed and analysed in this paper. Due to the large current fluctuations, the differential system is deduced by averaging the circuit equations of the operation modes over a switching period. Generic expressions that permit to calculate the current commutation intervals as function of the averaged state variables are also found to complete the model. Resistive losses are introduced into an equivalent averaged circuit leading to a more realistic scenario. The proposed state-space model is used for studying voltage conversion ratios, transients and frequency-domain responses of the converter as well as for designing a control loop that regulates the output voltage. Numerical simulations and experimental measurements corroborate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lessa TF, de Castro PD, Josias de Paula W, de Sousa Oliveira JD (2015) Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electron 8(10):2044–2057

    Article  Google Scholar 

  2. Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies and applications. IEEE Trans Power Electron 32(12):9143–9178

    Article  Google Scholar 

  3. Hu X, Gong C (2014) A high voltage gain dc–dc converter integrating coupled-inductor and diode-capacitor techniques. IEEE Trans Power Electron 29(2):789–800

    Article  Google Scholar 

  4. Ajami A, Ardi H, Farakhor A (2015) A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications. IEEE Trans Power Electron 30(8):4255–4263

    Article  Google Scholar 

  5. Alencar Freitas AA, Lessa Tofoli F, Mineiro Sá Júnior E, Daher S, Antunes FLM (2015) High-voltage gain dc–dc boost converter with coupled inductors for photovoltaic systems. IET Power Electron 8(10):1885–1892

    Article  Google Scholar 

  6. Patidar K, Umarikar AC (2016) A step-up PWM DC–DC converter for renewable energy applications. Int J Circuit Theory Appl 44(4):817–832

    Article  Google Scholar 

  7. Sri Revathi B, Prabhakar M (2018) Modular high-gain DC-DC converter for renewable energy microgrids. Electr Eng. https://doi.org/10.1007/s00202-017-0673-5

  8. Van de Sype DM, De Gusseme K, Renders B, Van den Bossche AP, Melkebeek JA (2005) A single switch boost converter with high conversion ratio. Proc IEEE Appl Power Electron Conf (APEC) 3:1581–1587

    Google Scholar 

  9. Zhao Q, Lee FC (2003) High-efficiency, high step-up dc–dc converters. IEEE Trans Power Electron 18(1):65–73

    Article  Google Scholar 

  10. Berkovich Y, Axelrod B (2011) Switched-coupled inductor cell for DC–DC converters with very large conversion ratio. IET Power Electron 4(3):309–315

    Article  Google Scholar 

  11. Chen S-M, Lao M-L, Hsieh Y-H, Liang T-J, Chen K-H (2015) A novel switched-coupled-inductor dc–dc step-up converter and its derivatives. IEEE Trans Ind Appl 51(1):309–314

    Article  Google Scholar 

  12. Nguyen TV, Petit P, Aillerie M, Salame Ch, Charles J-P (2015) Efficiency of magnetic coupled boost DC–DC converters mainly dedicated to renewable energy systems: influence of the coupling factor. Int J Circuit Theory Appl 43(8):1042–1062

    Article  Google Scholar 

  13. Erickson RW, Maksimovic D (2004) Fundamentals of power electronics. Springer, New York

    Google Scholar 

  14. Kazimierczuk MK (2008) Pulse-width modulated DC–DC power converters. Wiley, Chichester

    Book  Google Scholar 

  15. Forouzesh M, Siwakoti YP, Blaabjerg F, Hasanpour S (2016) Small-signal modeling and comprehensive analysis of magnetically coupled impedance-source converters. IEEE Trans Power Electron 31(11):7621–7641

    Article  Google Scholar 

  16. Ayachit A, Siwakoti YP, Galigekere VP, Kazimierczuk MK, Blaabjerg F (2018) Steady-state and small-signal analysis of A-source converter. IEEE Trans Power Electron 33(8):7118–7131

    Article  Google Scholar 

  17. Chan C-Y, Chincholkar SH, Jiang W (2017) Adaptive current-mode control of a high step-up DC–DC converter. IEEE Trans Power Electron 32(9):7297–7305

    Article  Google Scholar 

  18. Leyva-Ramos J, Mota-Varona R, Ortiz-Lopez MG, Diaz-Saldierna LH, Langarica-Cordoba D (2017) Control strategy of a quadratic boost converter with voltage multiplier cell for high-voltage gain. IEEE J Emerg Sel Top Power Electron 05(4):1761–1770

    Article  Google Scholar 

  19. Sun J, Mitchell DM, Gruel MF, Krein PT, Bass RM (2001) Averaged modeling of PWM converters operating in discontinuous conduction mode. IEEE Trans Power Electron 16(4):482–492

    Article  Google Scholar 

  20. Davoudi A, Jatskevich J (2006) Numerical state-space averaged-value modeling of PWM DC–DC converters operating in DCM and CCM. IEEE Trans Power Electron 21(4):1003–1012

    Article  Google Scholar 

  21. Dwari S, Jayawant S, Beechner T et al (2006) Dynamics characterization of coupled-inductor boost dc–dc converters. In: Proceedings IEEE workshop control and modelling for power electronics (COMPEL), pp 264–269

  22. Krein PT, Bentsman J, Bass RM, Lesieutre BC (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190

    Article  Google Scholar 

  23. D’Amico MB, González SA (2017) A small-signal averaged model of a coupled-inductor boost converter. In: Proceedings IEEE Latin American symposium on circuits and systems (LASCAS 2017)

Download references

Acknowledgements

Authors acknowledge the financial support of SGCyT at the Universidad Nacional del Sur, Universidad Nacional de La Plata, CONICET and ANPCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Belén D’Amico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The solution of set of linear equations defined in Subsection 3.2 is given by

$$\begin{aligned} Ip_{11}= & {} \dfrac{d_1 T[L_2 V_\mathrm{dc}-M (\overline{v_{C1}}-\overline{v_{C2}})]}{L_1 L_2 - M^2}, \\ Ip_{12}= & {} \dfrac{\hbox {d} T}{L_1} V_\mathrm{dc}+\dfrac{d_1 T M [M V_\mathrm{dc}-L_1 (\overline{v_{C1}}-\overline{v_{C2}})]}{L_1 (L_1 L_2 - M^2)},\\ Ip_{21}= & {} \dfrac{d_1 T[M V_\mathrm{dc}-L_1 (\overline{v_{C1}}-\overline{v_{C2}})]}{L_1 L_2 - M^2},\\ Ip_{22}= & {} \dfrac{d_1 M (L_1+M) T [M V_\mathrm{dc}-L_1 (\overline{v_{C1}}-\overline{v_{C2}})]}{L_1 (L_2+M) (L_1 L_2 - M^2)}\\&+\dfrac{T [d (L_1+M) V_\mathrm{dc}+d_2 L_1 (V_\mathrm{dc}-\overline{v_{C2}})]}{L_1 (L_2+M)} \end{aligned}$$

Notice that \(Ip_{12}\) is equivalent to (6) since both expressions arise in the same set of equations (Table 2). But, additional relations given by the average of the currents are used here to find \(d_1\) and \(d_2\) values.

Appendix B

Considering that \(L_{1M}= L_1 + M\), \(L_{2M}= L_2 + M\), \(L_p=L_1+L_2\), \(L_n=L_1-L_2\), \(L_{d}= d L_2 + M\) and \(L_\alpha =M[\alpha +L_1(L_2+M)]\), the polynomials that permit to calculate \(d_1\) and \(d_2\) as a function of the average state-space variables are

$$\begin{aligned} P_1= & {} L_d V_\mathrm{dc}-(1-d) M \overline{v_{C2}},\\ P_2= & {} L_\alpha T [-M V_\mathrm{dc}+L_1 (\overline{v_{C1}} - \overline{v_{C2}})],\\ P_3= & {} [(1-d) M^2 L_p + 2 L_1^2 L_2 L_d] V_\mathrm{dc}\\&-L_1 L_\alpha \overline{v_{C1}}+L_1 (3 L_\alpha -4 L_1 M L_{2M})\overline{v_{C2}},\\ P_4= & {} \{(1-d) M(M^4+L_2 L_\alpha )\\&-L_1 L_2 L_d[3(1-d) M^2+ 2 L_1L_d]\}V_\mathrm{dc}^2\\&+L_1 L_\alpha (2L_d-L_{2M}) V_\mathrm{dc}\overline{v_{C1}}\\&+2 (1-d) L_1 M L_\alpha \overline{v_{C2}}(\overline{v_{C2}}-\overline{v_{C1}})\\&+L_1\{L_{2M} L_\alpha +4 M [(1-d)^2 M^2 L_2\\&-d L_1 L_2(L_d+M)-L_1 M^2]\}V_\mathrm{dc}\overline{v_{C2}},\\ P_5= & {} - [2 M L_{1M} L_p + 2 d(L_2 -L_d)(L_1^2 L_2 + M^3) \\&+ d L_1 M (L_2^2 - M^2)]V_\mathrm{dc}^2\\&+L_1 [2 M L_\alpha +2 d L_2 (1-d)M^2\\&-d L_1 (2 d L_2 M +L_2^2 + 3 M^2)] V_\mathrm{dc} \overline{v_{C1}}\\&+d L_1^2 M^2 V_\mathrm{dc} \overline{v_{C2}}\\&+\{L_1^2 L_2[(1 - 2 d) L_d+M (1-8d+4 d^2)]\\&-2(1-d)M[M L_1(2 L_1+3 L_d)-L_\alpha ]\}V_\mathrm{dc} \overline{v_{C2}} \\&-2 (1 - d) L_1\{ M[(1-d) M L_{1M} + L_1 L_{2M}]\overline{v_{C1}}\\&-[L_\alpha -L_1 M L_d+(1 - d) M^3]\overline{v_{C2}}\}\overline{v_{C2}},\\ P_6= & {} (2 L_1 L_2 L_d +M^2 L_{2M}) V_\mathrm{dc}^2\\&- L_1 M (L_{2M} + 2 L_d) V_\mathrm{dc} \overline{v_{C1}}\\&- L_1 M (L_{2M} - 4 L_d) V_\mathrm{dc} \overline{v_{C2}} \\&-2 (1 - d) L_1 M^2 \overline{v_{C2}} (\overline{v_{C2}} - \overline{v_{C1}}), \\ P_7= & {} -M (L_{2M} - 2 d L_2)^2 V_\mathrm{dc}^3\\&+[L_1 L_{2M}^2 - 4 (1 - d) M^2 L_d]V_\mathrm{dc}^2 \overline{v_{C1}}\\&+4 (1-d)(L_\alpha -L_1 M L_{2M}-2L_1 M L_d) V_\mathrm{dc} \overline{v_{C2}}\overline{v_{C1}}\\&-4 (1-d)(L_\alpha -3 L_1 ML_d) V_\mathrm{dc}\overline{v_{C2}}^2 \\&-(L_{2M} - 2 L_d) [4 (1- d) M^2 \\&+ L_1 (L_{2M} - 2 L_d)]V_\mathrm{dc}^2 \overline{v_{C2}}\\&+ 4 (1 - d)^2 L_1 M^2 \overline{v_{C2}}^2 (\overline{v_{C1}}-\overline{v_{C2}}),\\ P_8= & {} (M L_{1M}+d L_n) [L_pV_\mathrm{dc}+L_1 M (2 \overline{v_{C2}}-\overline{v_{C1}})]\\&-L_1^2 M L_{2M} \overline{v_{C1}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, M.B., González, S.A. Modelling and dynamical analysis of a DC–DC converter with coupled inductors. Electr Eng 101, 67–80 (2019). https://doi.org/10.1007/s00202-019-00757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00757-1

Keywords

Navigation