Skip to main content
Log in

M-estimator for the 3D symmetric Helmert coordinate transformation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The \(3 \times 1\) multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method’s statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang G (2015) On least-squares solution to 3D similarity transformation problem under Gauss–Helmert model. J Geodesy 89:573–576

    Article  Google Scholar 

  • Chang G, Liu M (2015) M-estimator-based robust Kalman filter for systems with process modeling errors and rank-deficient measurement models. Nonlinear Dyn 80:1431–1449

    Article  Google Scholar 

  • Chang G, Xu T, Wang Q, Zhang S, Chen G (2017) A generalization of the analytical least-squares solution to the 3D symmetric Helmert coordinate transformation problem with an approximate error analysis. Adv Space Res 59:2600–2610

    Article  Google Scholar 

  • Chen W, Hill C (2005) Evaluation procedure for coordinate transformation. J Survey Eng 131:43–49

    Article  Google Scholar 

  • Dermanis A (2015) Problems in parameter estimation with nonlinear models. In: Arvanitis A, Basbas S, Lafazani P, Papadopoulou M, Paraschakis I, Rossikopoulos D (eds) Cartographies of mind, soul and knowledge, special issue for emeritus professor myron myridis. Publication of the School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, Thessaloniki, pp 117–133

    Google Scholar 

  • Fang X (2013) Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J Geodesy 87:733–749

    Article  Google Scholar 

  • Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation [conformal group C7(3)]. J Geodesy 77:66–76

    Article  Google Scholar 

  • Grgic M, Varga M, Basic T (2016) Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. J Survey Eng 05015004

  • Hampel FR (2001) Robust statistics: a brief introduction and overview. In: Symposium on robust statistics and fuzzy techniques in geodesy and GIS. Seminar für Statistik, Eidgenössische Technische Hochschule, ETH Zurich Switzerland

  • Hampel FR, Ronchetti EM, Rousseeuw P, Stahel W (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    Google Scholar 

  • Holl PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6:813–827

    Article  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

    Article  Google Scholar 

  • Huber PJ, Ronchetti EM (2009) Robust statistics. Wiley, New Jersey

    Book  Google Scholar 

  • Janicka J, Rapinski J (2014) Outliers detection by RANSAC algorithm in the transformation of 2D coordinate frames. Boletim de Ciencias Geodesicas 20:610–625

    Article  Google Scholar 

  • Lehmann R (2013) 3\(\sigma \)-rule for outlier detection from the viewpoint of geodetic adjustment. J Survey Eng 139:157–165

    Article  Google Scholar 

  • Lehmann R (2014) Transformation model selection by multiple hypotheses testing. J Geodesy 88:1117–1130

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite survey, 4th edn. Wiley, New Jersey

    Google Scholar 

  • Lu Z, Qu Y, Qiao S (2014) Geodesy: introduction to geodetic datum and geodetic systems. Springer, Berlin

    Book  Google Scholar 

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geodesy 84:751–762

    Article  Google Scholar 

  • Neitzel F, Schaffrin B (2015) On the Gauss-Helmert model with a singular dispersion matrix where BQ is of smaller rank than B. J Comput Appl Math 291:458–467

    Article  Google Scholar 

  • Pope AJ (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th annual meeting. American Society of Photogrammetry, Washington DC, pp 449–477

  • Schaffrin B (1985) A note on linear prediction within a Gauss-Markov model linearized with respect to a random approximation. In: Proceedings of the first international Tampere seminar on linear statistical models and their applications, Tampere, Finland, pp 285–300

  • Schaffrin B (2006) A note on constrained total least-squares estimation. Linear Algebra Appl 417:245–258

    Article  Google Scholar 

  • Schaffrin B, Felus YA (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J Geodesy 82:373–383

    Article  Google Scholar 

  • Schaffrin B, Snow K (2010) Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl 432:2061–2076

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geodesy 82:415–421

    Article  Google Scholar 

  • Shen Y, Chen Y, Zheng D-H (2006) A quaternion-based geodetic datum transformation algorithm. J Geodesy 80:233–239

    Article  Google Scholar 

  • Shi Y, Xu P, Peng J, Shi C, Liu J (2014) Adjustment of measurements with multiplicative errors: error analysis, estimates of the variance of unit weight, and effect on volume estimation from LiDAR-type digital elevation models. Sensors 14:1249–1266

    Article  Google Scholar 

  • Soler T, Han J-Y (2016) On rotation of frames and physical vectors: an exercise based on plate tectonics theory. GPS Solut. doi:10.1007/s10291-10016-10521-10295

    Google Scholar 

  • Teunissen PJG (1985) The geometry of geodetic inverse linear mapping and non-linear adjustment. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Delft, pp 1–186

  • Teunissen PJG (1988) The non-linear 2D symmetric Helmert transformation: an exact non-linear least-squares solution. Bulletin Géodésique 62:1–16

    Article  Google Scholar 

  • Wang Q, Chang G, Xu T, Zou Y (2016) Representation of the rotation parameter estimation errors in the Helmert transformation model. Survey Rev. doi:10.1080/00396265.00392016.01234806

    Google Scholar 

  • Xu P (1989) On robust estimation with correlated observations. Bulletin Géodésique 63:237–252

    Article  Google Scholar 

  • Xu P (1993) Consequences of constant parameters and confidence intervals of robust estimation. Bollettino di Geodesia et Scienze Affini 52:231–249

    Google Scholar 

  • Xu P (1999) Spectral theory of constrained second-rank symmetric random tensors. Geophys J Int 138:1–24

    Article  Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geodesy 79:146–159

    Article  Google Scholar 

  • Xu P (2013) The effect of incorrect weights on estimating the variance of unit weight. Studia Geophysica et Geodaetica 57:339–352

    Article  Google Scholar 

  • Xu P, Grafarend EW (1996) Statistics and geometry of the eigenspectra of three-dimensional second order-rank symmetric random tensors. Geophys J Int 127:744–756

    Article  Google Scholar 

  • Xu P, Liu J (2014) Variance components in errors-in-variables models: estimability, stability and bias analysis. J Geodesy 88:719–734

    Article  Google Scholar 

  • Xu P, Liu J, Shi C (2012) Total least-squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J Geodesy 86:661–675

    Article  Google Scholar 

  • Xu P, Shi Y, Peng J, Liu J, Shi C (2013) Adjustment of geodetic measurements with mixed multiplicative and additive random errors. J Geodesy 87:629–643

    Article  Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73:268–274

    Article  Google Scholar 

  • Yang Y, Zeng A (2009) Adaptive filtering for deformation parameter estimation in consideration of geometrical measurements and geophysical models. Sci China Earth Sci 52:1216–1222

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimator for correlated observations based on bifactor equivalent weights. J Geodesy 76:353–358

    Article  Google Scholar 

  • Yang Y, Zeng A, Wu F (2011) Horizontal crustal movement in China fitted by adaptive collocation with embedded Euler vector. Sci China Earth Sci 54:1822–1829

    Article  Google Scholar 

  • Yohai VJ, Maronna RA (1979) Asymptotic behavior of M-estimators for the linear model. Ann Stat 7:258–268

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the handling editor and the reviewers for their valuable comments which help to improve the manuscript significantly. This work is supported by the National Key Research and Development Program of China (2016YFB0501701) and the National Natural Science Foundation of China (41404001, 41404033, 41574013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guobin Chang or Tianhe Xu.

Appendix: An analytical solution of coordinate transformation

Appendix: An analytical solution of coordinate transformation

The coordinate transformation can be solved analytically if the coordinates at both reference frames are stochastically independent, as can be found in the geodetic literature (Grafarend and Awange 2003; Shen et al. 2006; Chang 2015). The computation steps are given as follows:

Calculate the barycenter coordinates (in both frames)

$$\begin{aligned} \bar{{{\varvec{x}}}}=\frac{{{1}}}{n}\sum _{i=1}^n {{\varvec{x}}_i } ,\bar{{{\varvec{y}}}}=\frac{{{1}}}{n}\sum _{i=1}^n {{\varvec{y}}_i } . \end{aligned}$$
(40)

Calculate the relative coordinates (to the barycenter)

$$\begin{aligned} \Delta {\varvec{x}}_i ={\varvec{x}}_i -\bar{{{\varvec{x}}}},\Delta {\varvec{y}}_i ={\varvec{y}}_i -\bar{{{\varvec{y}}}}. \end{aligned}$$
(41)

Calculate the DCM profile matrix

$$\begin{aligned} {\varvec{H}}=\sum _{i=1}^n {\Delta {\varvec{y}}_i \Delta {\varvec{x}}_i^T } . \end{aligned}$$
(42)

Calculate the singular value decomposition

$$\begin{aligned} \left( {{\varvec{{U,D,V}}}} \right) =\hbox {svd}\left[ {\varvec{{H}}} \right] ,s.t.,{\varvec{{H}}}={\varvec{{UDV}}}^{T} \end{aligned}$$
(43)

where \({{\varvec{U}}}\) and \({{\varvec{V}}}\) are orthogonal matrices, \({{\varvec{D}}}\) is diagonal with the diagonal elements being the singular values in the decreasing order. Calculate the DCM estimate

$$\begin{aligned} \hat{{{\varvec{R}}}}={\varvec{U}}\left[ {{\begin{array}{lll} 1&{}\quad 0&{}\quad 0 \\ 0&{}\quad 1&{} \quad 0 \\ 0&{} \quad 0&{} \quad {\det \left[ {\varvec{U}} \right] \det \left[ {\varvec{V}} \right] } \\ \end{array} }} \right] {\varvec{V}}^{T}. \end{aligned}$$
(44)

Calculate the quaternion profile matrix

(45)

with \(\kappa =\sum _{i=1}^n {\Delta {\varvec{y}}_i^T \Delta {\varvec{x}}_i } =\hbox {trace}\left[ {\varvec{H}} \right] \) and \({\varvec{z}}=\sum \limits _{i=1}^n \left( \Delta {\varvec{x}}_i \times \Delta {\varvec{y}}_i \right) \). Calculate the largest eigenvalue and the corresponding eigenvector

$$\begin{aligned} \left( {\rho _{\max } ,{\varvec{q}}_{\max } } \right) =\hbox {eig}\left[ {\varvec{K}} \right] ,s.t.,{\varvec{Kq}}_{\max } =\rho _{\max } {\varvec{q}}_{\max } . \end{aligned}$$
(46)

Calculate the quaternion estimate

$$\begin{aligned} \hat{{{\varvec{q}}}}={\varvec{q}}_{\max } . \end{aligned}$$
(47)

Calculate the cross inertia moment

$$\begin{aligned} c=\hbox {trace}\left[ {\hat{{{\varvec{R}}}}{\varvec{H}}^{T}} \right] , \end{aligned}$$
(48)

or

$$\begin{aligned} c=\rho _{\max } . \end{aligned}$$
(49)

Calculate the scale estimate

$$\begin{aligned} \hat{{s}}=\frac{-d+f}{2c\sigma _x^2 } \end{aligned}$$
(50)

with \(f=\sqrt{d^{2}+4\sigma _x^2 \sigma _y^2 c^{2}}\), \(d=\sigma _y^2 a-\sigma _x^2 b\), \(a=\sum \nolimits _{i=1}^n {\Delta {\varvec{x}}_i^T \Delta {\varvec{x}}_i } \), and \(b=\sum \nolimits _{i=1}^n {\Delta {\varvec{y}}_i^T \Delta {\varvec{y}}_i } \). Calculate the translation estimate

$$\begin{aligned} \hat{{{\varvec{t}}}}=\bar{{{\varvec{y}}}}-\hat{{s}}\hat{{{\varvec{R}}}}\bar{{{\varvec{x}}}}. \end{aligned}$$
(51)

The analytical solutions with the DCM or the quaternions are summarized as follows:

Algorithm 2

(DCM): (40), (41), (42\(\rightarrow \) (43), (44\(\rightarrow \) (48), (50\(\rightarrow \) (51).

Algorithm 3

(quaternions): (40), (41), (42), (45\(\rightarrow \) (46), (47\(\rightarrow \) (49), (50\(\rightarrow \) (51).

The detailed proofs of the two algorithms, i.e., the derivation of the solutions, can be found in (Grafarend and Awange 2003; Chang 2015) for the DCM case, for example, and (Shen et al. 2006) for the quaternions case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G., Xu, T. & Wang, Q. M-estimator for the 3D symmetric Helmert coordinate transformation. J Geod 92, 47–58 (2018). https://doi.org/10.1007/s00190-017-1043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1043-9

Keywords

Navigation