Skip to main content

Drug/Gene Delivery Platform Based on Supramolecular Interactions: Hyaluronic acid and Folic acid as Targeting Units

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 367 Accesses

Abstract

Building block construction based on supramolecular interactions and other noncovalent interactions provides facile fabrication approach in the development of novel drug/gene delivery platform. Compared with traditional covalent nanoparticles’ modification and synthesis of polymeric molecules with such long synthetic route, supramolecular building blocks of cyclodextrin-adamantane pair, cucurbituril-positive charge amine pair, and other host-guest counter pairs would be fabricated by shunt-wound synthetic routes instead of series-wound routes and could also import quantities of functional parts by simple introduction of different modified building blocks to acquire multifunctional delivery systems. On the other hand, targeting units are necessary to enhance the imagination effects and therapeutic effects toward cancer cells and decrease the side effects toward normal tissues. Hyaluronic acid (HA) and folic acid (FA) are the natural existing molecules that could targetedly recognize HA receptor and FA receptor overexpressed on the cancer cell surface, and the carboxyl groups of HA and FA are easily chemically modified to connect with supramolecular building blocks, which are commonly used as targeting units on the delivery platform. In this chapter, the progress in recent 5 years on biological targeted delivery platform based on supramolecular interactions and employment of FA and HA as targeting units is reviewed, and we hope that the readers could take inspiration from the reported supramolecular nanoplatform and then design and fabricate more novel and multifunctional delivery systems for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adhikari B, Lin X, Yamauchi M, Ouchi H, Aratsu K, Yagai S (2017) Hydrogen-bonded rosettes comprising π-conjugated systems as building blocks for functional one-dimensional assemblies. Chem Commun 53:9663–9683

    Article  CAS  Google Scholar 

  2. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109:6275–6540

    Article  CAS  Google Scholar 

  3. Gabrielson NP, Cheng J (2010) Multiplexed supramolecular self-assembly for non-viral gene delivery. Biomaterials 31:9117–9127

    Article  CAS  Google Scholar 

  4. Liu Y, Gao FP, Zhang D, Fan YS, Chen XG, Wang H (2014) Molecular structural transformation regulated dynamic disordering of supramolecular vesicles as pH-responsive drug release systems. J Control Release 173:140–147

    Article  CAS  Google Scholar 

  5. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32:1110–1120

    Article  CAS  Google Scholar 

  6. Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y (2012) Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem Eur J 18:4208–4215

    Article  CAS  Google Scholar 

  7. Lee DW, Jo J, Jo D, Kim J, Min JJ, Yang DH, Hyun H (2018) Supramolecular assembly based on host–guest interaction between beta-cyclodextrin and adamantane for specifically targeted cancer imaging. J Ind Eng Chem 57:37–44

    Article  CAS  Google Scholar 

  8. Zhao F, Yin H, Li J (2014) Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 35:1050–1062

    Article  CAS  Google Scholar 

  9. Ang CY, Tan SY, Wang X, Zhang Q, Khan M, Bai L, Selvan ST, Ma X, Zhu L, Nguyen KT, Tan NS, Zhao Y (2014) Supramolecular nanoparticle carriers selfassembled from cyclodextrin- and adamantane functionalized polyacrylates for tumor-targeted drug delivery. J Mater Chem B 2:1879–1890

    Article  CAS  Google Scholar 

  10. Liao R, Yi S, Liu M, Jin W, Yang B (2015) Folic-acid-targeted self-assembling supramolecular carrier for gene delivery. ChemBioChem 16:1622–1628

    Article  CAS  Google Scholar 

  11. Pal S, Dalal C, Jana NR (2017) Supramolecular host–guest chemistry-based folate/riboflavin functionalization and cancer cell labeling of nanoparticles. ACS Omega 2:8948–8958

    Article  CAS  Google Scholar 

  12. Zhou C, Afonso D, Valetti S, Feiler A, Cardile V, Graziano ACE, Conoci S, Sortino S (2017) Targeted photodynamic therapy with a folate/sensitizer assembly produced from mesoporous silica. Chem Eur J 23:7672–7676

    Article  CAS  Google Scholar 

  13. Yu G, Zhou J, Shen J, Tang G, Huang F (2016a) Cationic pillar[6]arene/ATP host–guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 7:4073–4708

    Article  CAS  Google Scholar 

  14. Wu MX, Yan HJ, Gao J, Cheng Y, Yang J, Wu JR, Gong BJ, Zhang HY, Yang YW (2018) Multifunctional supramolecular materials constructed from polypyrrole@UiO-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl Mater Interfaces 10:34655–34663

    Article  CAS  Google Scholar 

  15. Xing P, Chu X, Gu G, Li M, Su J, Hao A, Hou Y, Li S, Ma M, Wu L, Yu Q (2013) Controllable self-growth of a hydrogel with multiple membranes. RSC Adv 3:15237–15244

    Article  CAS  Google Scholar 

  16. Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y (2018) Coordination-triggered hierarchical folate/zinc supramolecular hydrogels leading to printable biomaterials. ACS Appl Mater Interfaces 10:4530–4539

    Article  CAS  Google Scholar 

  17. Belabassi Y, Moreau J, Gheran V, Henoumont C, Robert A, Callewaert M, Rigaux G, Cadiou C, Elst LV, Laurent S, Muller RN, Dinischiotu A, Voicu SN, Chuburu F (2017) Synthesis and characterization of PEGylated and fluorinated chitosans: application to the synthesis of targeted nanoparticles for drug delivery. Biomacromolecules 18:2756–2766

    Article  CAS  Google Scholar 

  18. Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu JH (2017) Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem Sci 8:8351–8356

    Article  CAS  Google Scholar 

  19. Szente L, Puskás I, Csabai K, Fenyvesi E (2014) Supramolecular proteoglycan aggregate mimics: cyclodextrin-assisted biodegradable polymer assemblies for electrostatic-driven drug delivery. Chem Asian J 9:1365–1372

    Article  CAS  Google Scholar 

  20. Oommen OP, Duehrkop C, Nilsson B, Hilborn J, Varghese OP (2016) Multifunctional hyaluronic acid and chondroitin sulfate nanoparticles: impact of glycosaminoglycan presentation on receptor mediated cellular uptake and immune activation. ACS Appl Mater Interfaces 8:20614–20624

    Article  CAS  Google Scholar 

  21. Choi K, Jang M, Kim JH, Ahn HJ (2014) Tumor-specific delivery of siRNA using supramolecular assembly of hyaluronic acid nanoparticles and 2b RNA-binding protein/siRNA complexes. Biomaterials 35:7121–7132

    Article  CAS  Google Scholar 

  22. Wang X, Li Y, Li Q, Neufeld CI, Pouli D, Sun S, Yang L, Deng P, Wang M, Georgakoudi I, Tang S, Xu Q (2017) Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release 263:39–45

    Article  CAS  Google Scholar 

  23. Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev 115:7794–7839

    Article  CAS  Google Scholar 

  24. Yang Y, Zhang YM, Chen Y, Chen JT, Liu Y (2013) Targeted polysaccharide nanoparticle for adamplatin prodrug delivery. J Med Chem 56:9725–9736

    Article  CAS  Google Scholar 

  25. Yang Y, Zhang YM, Chen Y, Chen JT, Liu Y (2016a) Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci Rep 6:19212

    Article  CAS  Google Scholar 

  26. Yang Y, Zhang YM, Li D, Sun HL, Fan HX, Liu Y (2016b) Camptothecin-polysaccharide co-assembly and its controlled release. Bioconjug Chem 27:2834–2838

    Article  CAS  Google Scholar 

  27. Chen LX, Zhang YM, Cao Y, Zhang HY, Liu Y (2016) Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticle for controlled paclitaxel delivery. RSC Adv 6:28593–28598

    Article  CAS  Google Scholar 

  28. Zhao Q, Chen Y, Sun M, Wu XJ, Liu Y (2016) Construction and drug delivery of a fluorescent TPE-bridged cyclodextrin/hyaluronic acid supramolecular assembly. RSC Adv 6:50673–50679

    Article  CAS  Google Scholar 

  29. Yu J, Chen Y, Zhang YH, Xu X, Liu Y (2016b) Supramolecular assembly of coronene derivatives for drug delivery. Org Lett 18:4542–4545

    Article  CAS  Google Scholar 

  30. Zhang YM, Yang Y, Zhang YH, Liu Y (2016b) Polysaccharide nanoparticles for efficient siRNA targeting in cancer cells by supramolecular pKa shift. Sci Rep 6:28848

    Article  CAS  Google Scholar 

  31. Zhang Y, Yang D, Chen H, Lim WQ, Phua FSZ, An G, Yang P, Zhao Y (2018) Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 163:14–24

    Article  CAS  Google Scholar 

  32. Han X, Li Z, Sun J, Luo C, Li L, Liu Y, Du Y, Qiu S, Ai X, Wu C, Lian H, He Z (2015) Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. J Control Release 197:29–40

    Article  CAS  Google Scholar 

  33. Li N, Chen Y, Zhang YM, Yang Y, Su Y, Chen JT, Liu Y (2014) Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for targeted delivery of anticancer drugs. Sci Rep 4:4164

    Article  Google Scholar 

  34. Zhang YH, Zhang YM, Yang Y, Chen LX, Liu Y (2016a) Controlled DNA condensation and targeted cellular imaging by ligand exchange in a polysaccharide–quantum dot conjugate. Chem Commun 52:6087–6090

    Article  CAS  Google Scholar 

  35. Chen Y, Zhao D, Liu Y (2015) Polysaccharide–porphyrin–fullerene supramolecular conjugates as a photodriven DNA cleavage reagent. Chem Commun 51:12266–12269

    Article  CAS  Google Scholar 

  36. Yu Q, Zhang YM, Liu YH, Xu X, Liu Y (2018) Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Sci Adv 4:eaat2297

    Article  Google Scholar 

  37. Chen WH, Luo GF, Qiu WX, Lei Q, Liu LH, Wang SB, Zhang XZ (2017) Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117:54–65

    Article  CAS  Google Scholar 

  38. Zhang YM, Cao Y, Yang Y, Chen JT, Liu Y (2014) A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem Commun 50:13066–13069

    Article  CAS  Google Scholar 

  39. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  40. Lutolf MP (2009) Spotlight on hydrogels. Nat Mater 8:451–453

    Article  CAS  Google Scholar 

  41. Eslahi N, Abdorahim M, Simchi A (2016) Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 17:3441–3463

    Article  CAS  Google Scholar 

  42. Kumar P, Pandit A, Zeugolis DI (2016) Progress in corneal stromal repair: from tissue grafts and biomaterials to modular supramolecular tissue-like assemblies. Adv Mater 28:5381–5399

    Article  CAS  Google Scholar 

  43. Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3:58–64

    Article  CAS  Google Scholar 

  44. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  45. Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20

    Article  CAS  Google Scholar 

  46. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  47. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  48. Noro A, Hayashi M, Matsushita Y (2012) Design and properties of supramolecular polymer gels. Soft Matter 8:6416–6429

    Article  CAS  Google Scholar 

  49. Shin M, Lee H (2017) Gallol-rich hyaluronic acid hydrogels: shear-thinning, protein accumulation against concentration gradients, and degradation-resistant properties. Chem Mater 29:8211–8220

    Article  CAS  Google Scholar 

  50. Rowland MJ, Atgie M, Hoogland D, Scherman OA (2015) Preparation and supramolecular recognition of multivalent peptide–polysaccharide conjugates by cucurbit[8]uril in hydrogel formation. Biomacromolecules 16:2436–2443

    Article  CAS  Google Scholar 

  51. Jung H, Park JS, Yeom J, Selvapalam N, Park KM, Oh K, Yang JA, Park KH, Hahn SK, Kim K (2014) 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 15:707–714

    Article  CAS  Google Scholar 

  52. Park KM, Yang JA, Jung H, Yeom J, Park JS, Park KH, Hoffman AS, Hahn SK, Kim K (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968

    Article  CAS  Google Scholar 

  53. Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA (2018) Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjug Chem 29:905–913

    Article  CAS  Google Scholar 

  54. Wei K, Zhu M, Sun Y, Xu J, Feng Q, Lin S, Wu T, Xu J, Tian F, Xia J, Li G, Bian L (2016) Robust biopolymeric supramolecular “host–guest macromer” hydrogels reinforced by in situ formed multivalent nanoclusters for cartilage regeneration. Macromolecules 49:866–875

    Article  CAS  Google Scholar 

  55. Mealy JE, Rodell CB, Burdick JA (2015) Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. J Mater Chem B 3:8010–8019

    Article  CAS  Google Scholar 

  56. Rodell CB, Kaminski AL, Burdick JA (2013) Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14:4125–4134

    Article  CAS  Google Scholar 

  57. Rodell CB, Rai R, Faubel S, Burdick JA, Soranno DE (2015b) Local immunotherapy via delivery of interleukin-10 and transforming growth factor β antagonist for treatment of chronic kidney disease. J Control Release 206:131–139

    Article  CAS  Google Scholar 

  58. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27:5075–5079

    Article  CAS  Google Scholar 

  59. Rodell CB, Dusaj NN, Highley CB, Burdick JA (2016) Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv Mater 28:8419–8424

    Article  CAS  Google Scholar 

  60. Rodell CB, MacArthur JW Jr, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA (2015a) Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater 25:636–644

    Article  CAS  Google Scholar 

  61. Highley CB, Rodell CB, Kim IL, Wade RJ, Burdick JA (2014) Ordered, adherent layers of nanofibers enabled by supramolecular interactions. J Mater Chem B 2:8110–8115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, Y. (2019). Drug/Gene Delivery Platform Based on Supramolecular Interactions: Hyaluronic acid and Folic acid as Targeting Units. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics