Skip to main content

Chiral High Performance Liquid Chromatography of Neutral Glycerolipids

  • Living reference work entry
  • First Online:
Encyclopedia of Lipidomics
  • 399 Accesses

Synonyms

Chiral-phase HPLC; Fats and oils; Glycerolipids; Neutral lipids

Introduction

Glycerolipids (neutral acyl- and alkylglycerols, glycerophospholipids, glyceroglycolipids, etc.) are complex mixtures of different types of molecular species that contain stereoisomers. Although technology of chromatography has advanced rapidly in recent years, there are still many lipid species that are difficult to separate and for which specific biological activity and physiological function remain unknown. Therefore, the development of accurate and concise methods for the analysis of lipids is essential. This has led to the developments of mass spectrometry (MS)-based lipidomics methodologies (Han and Gross 2003). However, MS is unable to differentiate among enantiomers and in many instances among diastereomers. This shortcoming is especially evident in the glycerolipids because of the prochiral nature of glycerol. At present, the resolution of a number of stereoisomeric lipid molecules has...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ando Y, Takagi T. Micro method for stereospecific analysis of triacyl-sn-glycerols by chiral-phase high performance liquid chromatography. J Am Oil Chem Soc. 1993;70:1047–9.

    Article  CAS  Google Scholar 

  • Ando Y, Nishimura K, Aoyanagi N, Takagi T. Stereospecific analysis of fish oil triacyl-sn-glycerols. J Am Oil Chem Soc. 1992;69:417–24.

    Article  CAS  Google Scholar 

  • Ando Y, Ota T, Matsuhira Y, Yazawa K. Stereospecific analysis of triacyl-sn-glycerols in docosahexaenoic acid-rich fish oils. J Am Oil Chem Soc. 1996;73(4):483–7.

    Article  CAS  Google Scholar 

  • Brockerhoff H. Stereospecific analysis of triglycerides. Lipids. 1971;6(12):942–56.

    Article  CAS  PubMed  Google Scholar 

  • Buchnea D. Synthesis of C-18 mixed acid diacyl-sn-glycerol enantiomers. Lipids. 1971;6(10):734–9.

    Article  CAS  PubMed  Google Scholar 

  • Buchnea D. Detritylation by silicic acid boric acid column chromatography. Lipids. 1974;9(1):55–7.

    Article  CAS  Google Scholar 

  • Christie WW. The chromatographic resolution of chiral lipids. In: Christie WW, editor. Advances in lipid methodology – one. Ayr: The Oily Press; 1992. p. 121–48.

    Google Scholar 

  • Deng L, Nakano H, Iwasaki Y. Direct separation of regioisomers and enantiomers of monoacylglycerols by tandem column high-performance liquid chromatography. J Chromatogr A. 2007;1165:93–9.

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Nakano H, Iwasaki Y. Direct separation of monoacylglycerol isomers by enantioselective high-performance liquid chromatography. J Chromatogr A. 2008;1198–1199:67–72.

    Article  PubMed  Google Scholar 

  • García P, Franco P, Álvarez R, de Lera ÁR. Separation of regioisomers and enantiomers of underivatized saturated and unsaturated fatty acid monoacylglycerols using enantioselective HPLC. J Sep Sci. 2011;34:999–1003.

    Article  PubMed  Google Scholar 

  • Halldorsson A, Magnusson CD, Haraldsson GG. Chemoenzymatic synthesis of structured triacylglycerols by highly regioselective acylation. Tetrahedron. 2003;59:9101–9.

    Article  CAS  Google Scholar 

  • Han XL, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44:1071–9.

    Article  CAS  PubMed  Google Scholar 

  • Itabashi Y. Chiral-phase HPLC of glycerolipids. In: Lin JT, McKeon TA, editors. HPLC of acyl lipids. New York: HNB Publishing; 2005. p. 168–98.

    Google Scholar 

  • Itabashi Y. Development and application of chromatographic methods for lipid analysis. Chromatography. 2011;32:59–72.

    Article  CAS  Google Scholar 

  • Itabashi Y. Chiral separation of glycerolipids by high-performance liquid chromatography. J Lipid Nutr. 2012;21:27–34.

    Article  CAS  Google Scholar 

  • Itabashi Y, Takagi T. High-performance liquid chromatographic separation of monoacylglycerol enantiomers on a chiral stationary phase. Lipids. 1986;21:413–6.

    Article  CAS  Google Scholar 

  • Itabashi Y, Takagi T. High performance liquid chromatographic separation of diacylglycerol enantiomers on a chiral stationary phase. J Chromatogr. 1987;402:257–64.

    Article  CAS  Google Scholar 

  • Itabashi Y, Kuksis A, Marai L, Takagi T. HPLC resolution of diacylglycerol moieties of natural triacylglycerols on a chiral phase consisting of bonded (R)-(+)-1-(1-naphthyl)ethylamine. J Lipid Res. 1990;31:1711–7.

    CAS  PubMed  Google Scholar 

  • Itabashi Y, Marai L, Kuksis A. Identification of natural diacylglycerols as the 3,5-dinitrophenylurethanes by chiral phase liquid chromatography with mass spectrometry. Lipids. 1991;26:951–6.

    Article  CAS  Google Scholar 

  • Iwasaki Y, Yasui M, Ishikawa T, Irimescu R, Hata K, Yamane T. Optical resolution of asymmetric triacylglycerols by chiral-phase high performance liquid chromatography. J Chromatogr A. 2001;905(1–2):111–8.

    Article  CAS  PubMed  Google Scholar 

  • Kalpio M, Nylund M, Linderborg KM, Yang B, Kristinsson B, Haraldsson GG, Kallio H. Enantioselective chromatography in analysis of triacylglycerols of common edible fats and oils. Food Chem. 2015;172:718–24.

    Article  CAS  PubMed  Google Scholar 

  • Kristinsson B, Linderborg KM, Kallio H, Haraldsson GG. Synthesis of enantiopure structured triacylglycerols. Tetrahedron Asymmetry. 2014;25(2):125–32.

    Article  CAS  Google Scholar 

  • Kuksis A. Analysis of positional isomers of glycerolipids by non-enzymatic methods. In: Christie WW, editor. Advances in lipid methodology – three. Dundee: The Oily Press; 1996. p. 1–36.

    Google Scholar 

  • Kuksis A, Itabashi Y. Regio- and stereospecific analysis of glycerolipids. Methods. 2005;36:172–85.

    Article  CAS  PubMed  Google Scholar 

  • Kuksis A, Itabashi Y. LC/MS and chiral separation. In: Mossoba MM, Kramer JKG, Brenna TT, McDonald RE, editors. Lipid analysis and lipidomics. Champaign: AOCS Press; 2006. p. 73–108.

    Google Scholar 

  • Kuksis A, Lehner R. Chapter 11, Intestinal synthesis of triacylglycrols. In: Mansbach CM, Tso P, Kuksis A, editors. Intestinal lipid metabolism. New York: Kluwer/Plenum Publishers; 2001. p. 185–213.

    Chapter  Google Scholar 

  • Kuksis A, Marai L, Myher JJ, Itabashi Y, Pind S. Qualitative and quantitative analysis of molecular species of glycerolipids by HPLC. In: Perkins EG, editor. Analysis of fats, oils and lipoproteins. Champaign: AOCS Press; 1991a. p. 214–32.

    Google Scholar 

  • Kuksis A, Marai L, Myher JJ, Itabashi Y, Pind S. Applications of GC/MS, LC/MS and FAB/MS to determination of molecular species of glycerolipids. In: Perkins EG, editor. Analysis of fats, oils and lipoproteins. Champaign: AOCS Press; 1991b. p. 464–95.

    Google Scholar 

  • Lehner R, Kuksis A, Itabashi Y. Stereospecificity of monoacylglycerol and diacylglycerol acyltransferases from rat intestine as determined by chiral phase high performance liquid chromatography. Lipids. 1993;28:29–34.

    Article  CAS  PubMed  Google Scholar 

  • Lísa M, Holčapek M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem. 2013;85:1852–9.

    Article  PubMed  Google Scholar 

  • Lísa M, Velinska H, Holčapek M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem. 2009;87(10):3903–10.

    Article  Google Scholar 

  • Magnusson CD, Gudmundsdottir AV, Hansen K-A, Haraldsson GG. Synthesis of enantiopure reversed structured ether lipids of the 1-0-alkyl-sn-2,3-diacylglycerol type. Mar Drugs. 2015;13:173–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen P, Aronsson E, Odham G, Akesson B. Diastereomeric separations of natural glycero derivatives as their 1-(1-naphthyl)ethyl carbamates by high-performance liquid chromatography. J Chromatogr. 1985;350:417–26.

    Article  CAS  Google Scholar 

  • Morley N, Kuksis A. Positional specificity of lipoprotein lipase. J Biol Chem. 1972;247(29):6380–3.

    Google Scholar 

  • Morley N, Kuksis A, Buchnea D, Myher JJ. Hydrolysis of diacylglycerols by lipoprotein lipase. J Biol Chem. 1975;250(9):3414–8.

    CAS  PubMed  Google Scholar 

  • Myher JJ, Kuksis A. Stereospecific analysis of triacylglycerols via racemic phosphatidylcholines and phospholipase C. Can J Biochem. 1979;57:117–24.

    Article  CAS  PubMed  Google Scholar 

  • Myher JJ, Kuksis A, Yang L-Y. Stereospecific analysis of menhaden oil triacylglycerols and resolution of complex polyunsaturated diacylglycerols by gas chromatography on polar capillary columns. Biochem Cell Biol. 1990;68:336–44.

    Article  CAS  Google Scholar 

  • Myher JJ, Kuksis A, Geher K, Park PW, Diersen-Schade DA. Stereospecific analysis of triacylglycerols rich in long-chain polyunsaturated fatty acids. Lipids. 1996;31:207–15.

    Article  CAS  PubMed  Google Scholar 

  • Myher JJ, Kuksis A, Park PW. Stereospecific analysis of docosahexaenoic acid rich triacylglycerols by chiral phase HPLC with online electrospray mass spectrometry. In: MacDonald E, Mossoba MM, editors. New techniques and application in lipids analysis. Champaign: AOCS Press; 1997. p. 100–20.

    Google Scholar 

  • Nagai T, Mizobe H, Otake I, Ichioka K, Kojima K, Matsumoto Y, Gotoh N, Kuroda I, Wada S. Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column. J Chromatogr A. 2011;1218:2880–6.

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Matsumoto Y, Jiang YY, Ishikawa K, Wakatabe T, Mizobe H, Yoshinaga K, Kojima K, Kuroda I, Saito T, Beppu F, Gotoh N. Actual ratios of triacylglycerol positional isomers and enantiomers comprising saturated fatty acids and highly unsaturated fatty acids in fishes and marine mammals. J Oleo Sci. 2013;62:1009–15.

    Article  CAS  PubMed  Google Scholar 

  • Paltauf F, Johnston JM. The metabolism in vitro of enantiomeric 1-O-alkylglycerols and 1,2- and 1,3-alkyl acyl glycerols in the intestinal mucosa. Biochim Biophys Acta. 1971;239:47–56.

    Article  CAS  PubMed  Google Scholar 

  • Pirkle WH, Mahker G, Hyun MH. Separation of enantiomers of 3,5-dinitrophenylcarbamates and 3,5-dinitrophenylureas. J Liq Chromatogr. 1986;9:443–53.

    Article  CAS  Google Scholar 

  • Piyatheerawong W, Iwasaki Y, Yamane T. Direct separation of regio- and enantiomeric isomers of diacylglycerols by tandem column high-performance liquid chromatography. J Chromatogr A. 2005;1068:243–8.

    Article  CAS  PubMed  Google Scholar 

  • Řezanka T, Siegler K. Separation of enantiomeric triacylglycerols by chiral-phase HPLC. Lipids. 2014;49:1251–60.

    Article  PubMed  Google Scholar 

  • Řezanka T, Kolouchová I, Čejková A, Cajthami T, Sigler K. Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS. J Sep Sci. 2013;36(20):3310–20.

    PubMed  Google Scholar 

  • Řezanka T, Vítová M, Nováková A, Sigler K. Separation and identification of odd chain triacylglycerols of the protozoan Khawkinea quartana and the mold Mortierella alpina using LC-MS. Lipids. 2015;50:811–20.

    Article  PubMed  Google Scholar 

  • Rodriguez JA, Mendoza LD, Pezzotti F, Vanthuyne N, Leclaire J, Verger R, Buono G, Carriere F, Fotiadu F. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal Biochem. 2008;375:196–208.

    Article  CAS  PubMed  Google Scholar 

  • Takagi T. Chromatographic resolution of chiral lipid derivatives. Prog Lipid Res. 1990;29:277–98.

    CAS  PubMed  Google Scholar 

  • Takagi T, Ando Y. Enantiomer separations of mixtures of monoacylglycerol derivatives by HPLC on a chiral column. Lipids. 1990;25:398–400.

    Article  CAS  Google Scholar 

  • Takagi T, Ando Y. Stereospecific analysis of triacyl-sn-glycerols by chiral high-performance liquid chromatography. Lipids. 1991;26:542–7.

    Article  CAS  Google Scholar 

  • Takagi T, Itabashi Y. Resolution of racemic monoacylglycerols to enantiomers by high-performance liquid chromatography. Yukagaku. 1985;34:962–3.

    Google Scholar 

  • Takagi T, Itabashi Y. Rapid enantiomer separations of diacyl- and dialkylglycerol enantiomers by high performance liquid chromatography on a chiral stationary phase. Lipids. 1987;22:596–600.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Itabashi Y, Suzuki M, Kuksis A. A simple method for the determination of stereochemical configuration of the glycerol moieties in glycoglycerolipids by chiral phase high-performance liquid chromatography. Lipids. 2001;36:741–8.

    Article  CAS  PubMed  Google Scholar 

  • Zandonella G, Haalck L, Spener F, Faber K, Paltauf F, Hermetter A. Inversion of lipase stereospecificity for fluorogenic alkylacyl glycerols. Effect of substrate solubilisation. Eur J Biochem. 1995;231:50–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Itabashi or A. Kuksis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this entry

Cite this entry

Itabashi, Y., Kuksis, A. (2016). Chiral High Performance Liquid Chromatography of Neutral Glycerolipids. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics