Skip to main content

Random Spot Urine Markers for Kidney and Their Applications

  • Reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

Over the few last decades, several additional urinary biomarkers have been correlated to other organ or system abnormalities other than kidney disease. In this setting, abnormal findings on a routine urinalysis, often in an otherwise asymptomatic patient, may be the first evidence of underlying kidney disease and even other diseases or conditions like a higher cardiovascular risk set.

A 24-h urine evaluation is still considered the gold standard method for the quantification of important urinary biomarkers like proteinuria. Nevertheless, its collection is laborious and entails significant errors that could compromise the accuracy of this method. Therefore, random spot urine assessment was developed to estimate quantitative measurements of 24-h collections. Many trials have been conducted to determine which formulae (correction for other parameters) and methods (including voiding of the day or technical procedures) are better to minimize sources of false results and enhance correlation with the gold standard. Currently, random spot urine examination is already mentioned in some international guidelines as an alternative analysis to diagnose and monitor several diseases. It allows the identification of multiple markers, which can be organized into three groups, according to their laboratory method assessment: physical, chemical, and microscopic characters. However, evidence regarding its role and power is still not unanimous, at least in some diseases, and future trials to prove how best to apply it are needed.

This review outlines random spot urine biomarkers for the kidney and their applications in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

ATN:

Acute tubular necrosis

Ca:

Calcium

CKD:

Chronic kidney disease

CuSO4 :

Copper sulfate

DBDH:

Diisopropylbenzene dihydroperoxide

DIDNTB:

bis(3′,3″-Diiodo-4′,4″-dihydroxy-5′,5″-dinitrophenyl)-3,4,5,6-tetrabromo-sulfonephthalein

eAER:

Estimated albumin excretion rate

ESRD:

End-stage renal disease

FCU:

Fractional renal clearance of urate

GFR:

Glomerular filtration rate

GN:

Glomerulonephritis

INTERSALT:

International study of electrolyte excretion and blood pressure

IRMA-2:

Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria

K:

Potassium

KDIGO:

Kidney Disease: Improving Global Outcomes

LE:

Leukocyte esterase

LN:

Lupus nephritis

MESNA:

Mercaptoethane sulfonate sodium

Mg:

Magnesium

Na:

Sodium

P/C:

Protein/creatinine ratio

Ph:

Phosphate

PREVEND:

Prevention of Renal and Vascular End-Stage Disease

RBCs:

Red blood cells

SG:

Specific gravity

SGLT2:

Sodium/glucose cotransporter 2

SLC5A2:

Solute carrier family 5

SLE:

Systemic lupus erythematosus

SNP:

Single-nucleotide polymorphisms

SSA:

Sulfosalicylic acid

STENO-2:

Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes

TMB:

3,3′,5,5′-Tetramethylbenzidine

UACR:

Urinary albumin/protein ratio

UTI:

Urinary tract infection

WBCs:

White blood cells

Zn:

Zinc

References

  • Abdelmalek JA, Gansevoort RT, Lambers Heerspink HJ, et al. Estimated albumin excretion rate versus urine albumin-creatinine ratio for the assessment of albuminuria: a diagnostic test study from the Prevention of Renal and Vascular Endstage Disease (PREVEND) Study. Am J Kidney Dis. 2014;63:415.

    Article  CAS  PubMed  Google Scholar 

  • Antunes VVH, Veronese FJV, Morales JV. Diagnostic accuracy of the protein/creatinine ratio in urine samples to estimate 24-h proteinuria in patients with primary glomerulopathies: a longitudinal study. Nephrol Dial Transplant. 2008;23:2242–6.

    Article  CAS  PubMed  Google Scholar 

  • Assadi FK, Fornell L. Estimation of urine specific gravity in neonates with a reagent strip. J Pediatr. 1986;108:995–6.

    Article  CAS  PubMed  Google Scholar 

  • Ballarin J, Arce Y, Torra Balcells R, et al. Acute renal failure associated to paroxysmal nocturnal haemoglobinuria leads to intratubular haemosiderin accumulation and CD163 expression. Nephrol Dial Transplant. 2011;26:3408–11.

    Article  CAS  PubMed  Google Scholar 

  • Barratt J, Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007;177:361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett PH, Haffner S, Kasiske BL, et al. Screening and management of microalbuminuria in patients with diabetes mellitus: recommendations to the Scientific Advisory Board of the National Kidney Foundation from an ad hoc committee of the Council on Diabetes Mellitus of the National Kidney Foundation. Am J Kidney Dis. 1995;25:107–12.

    Article  CAS  PubMed  Google Scholar 

  • Birmingham DJ, Rovin BH, Shidham G, et al. Spot urine protein/creatinine ratios are unreliable estimates of 24 h proteinuria in most systemic lupus erythematosus nephritis flares. Kidney Int. 2007;72:865.

    Article  CAS  PubMed  Google Scholar 

  • Brenner B, Taal M, Chertow G, et al. Brenner & Rector’s the kidney, 9th ed. Boston: Elsevier Health Sciences; 2011.

    Google Scholar 

  • Brigden ML, Edgell D, McPherson M, et al. High incidence of significant urinary ascorbic acid concentrations in a west coast population – implications for routine urinalysis. Clin Chem. 1992;38:426.

    CAS  PubMed  Google Scholar 

  • Brodsky SV, Nadasdy T, Rovin BH, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 2011;80:181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busby DE, Bakris GL. Comparison of commonly used assays for the detection of microalbuminuria. J Clin Hypertens (Greenwich). 2004;6:8.

    Article  CAS  Google Scholar 

  • Carter JL, Tomson CR, Stevens PE, et al. Does urinary tract infection cause proteinuria or microalbuminuria? A systematic review. Nephrol Dial Transplant. 2006;21:3031.

    Article  PubMed  Google Scholar 

  • Cohen RA, Brown RS. Clinical practice. Microscopic hematuria. N Engl J Med. 2003;348:2330.

    Article  PubMed  Google Scholar 

  • Comper WD, Osicka TM. Detection of urinary albumin. Adv Chron Kidney Dis. 2005;12:170.

    Article  Google Scholar 

  • Constantiner M, Sehgal AR, Humbert L, et al. A dipstick protein and specific gravity algorithm accurately predicts pathological proteinuria. Am J Kidney Dis. 2005;45:833.

    Article  CAS  PubMed  Google Scholar 

  • Demilie T, Beyene G, Melaku S, et al. Diagnostic accuracy of rapid urine dipstick test to predict urinary tract infection among pregnant women in Felege Hiwot Referral Hospital, Bahir Dar. North West Ethiopia. BMC Res Notes. 2014;7:481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelgau MM, Narayan KM, Herman WH. Screening for type 2 diabetes. Diabetes Care. 2000;23(12):1868–9.

    Google Scholar 

  • Fassett RG, Horgan BA, Mathew TH. Detection of glomerular bleeding by phase-contrast microscopy. Lancet. 1982;1:1432–4.

    Article  CAS  PubMed  Google Scholar 

  • Fine DM, Ziegenbein M, Petri M, et al. A prospective study of protein excretion using short-interval timed urine collections in patients with lupus nephritis. Kidney Int. 2009;76(12):1284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogazzi GB. The urinary sediment: an integrated view. 3rd ed. Milan: Elsevier; 2010.

    Google Scholar 

  • Fotheringham J, Campbell MJ, Fogarty DG, et al. Estimated albumin excretion rate versus urine albumin-creatinine ratio for the estimation of measured albumin excretion rate: derivation and validation of an estimated albumin excretion rate equation. Am J Kidney Dis. 2014;63:405.

    Article  CAS  PubMed  Google Scholar 

  • Garingalo-Molina FD. Asymptomatic bacteriuria among pregnant women: overview of diagnostic approaches. Phil J Microbiol Infect Dis. 2000;29:177–86.

    Google Scholar 

  • Ginsberg JM, Chang BS, Matarese RA, et al. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med. 1983;309:1543.

    Article  CAS  PubMed  Google Scholar 

  • Gökçe C, Gökçe O, Baydinç C, et al. Use of random urine samples to estimate total urinary calcium and phosphate excretion. Arch Intern Med. 1991;151(8):1587–8.

    Article  PubMed  Google Scholar 

  • Gorchynski J, Dean K, Anderson CL. Analysis of urobilinogen and urine bilirubin for intra-abdominal injury in blunt trauma patients. West J Emerg Med. 2009;10(2):85–8.

    PubMed  PubMed Central  Google Scholar 

  • Gray CH, Millar HR. Tests for glycosuria. A comparison of BenediCrS test, Clinitest and Glucotest. Br Med J. 1953; 1:1361–3.

    Google Scholar 

  • Grossfeld G, Litwin M, Wolf J, et al. Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy – part I: definition, detection, prevalence and etiology. Urology. 2001;57:599–603.

    Article  CAS  PubMed  Google Scholar 

  • Guedes-Marques M, Cotovio P, Ferrer F, et al. Random spot urine protein/creatinine ratio: a reliable method for monitoring lupus nephritis? Clin Kidney J. 2013;6:590–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez E, Gonzalez E, Hernandez E, et al. Factors that determine an incomplete recovery of renal function in macrohematuria-induced acute renal failure of IgA nephropathy. Clin J Am Soc Nephrol. 2007;2:51–7.

    Article  PubMed  Google Scholar 

  • Hahn B, Mcmahon M, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64(6):797–808.

    Article  Google Scholar 

  • Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27:4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerspink HJL, Gansevoort RT, Brenner BM, et al. Comparison of different measures of urinary protein excretion for the prediction of renal events. J Am Soc Nephrol. 2010;21:1355–60.

    Article  Google Scholar 

  • Hemmelgarn BR, Zhang J, Manns BJ, et al. Nephrology visits and health care resource use before and after reporting estimated glomerular filtration rate. JAMA. 2010;303:1151–8.

    Article  CAS  PubMed  Google Scholar 

  • Hotta O, Yusa N, Kitamura H, et al. Urinary macrophages as activity markers of renal injury. Clin Chim Acta. 2000;297:123–33.

    Article  CAS  PubMed  Google Scholar 

  • House AA, Cattran DC. Nephrology: 2. Evaluation of asymptomatic hematuria and proteinuria in adult primary care. CMAJ. 2002;166:348–53.

    PubMed  PubMed Central  Google Scholar 

  • Ilich JZ, Blanusa M, Orlić ZC, et al. Comparison of calcium, magnesium, sodium, potassium, zinc, and creatinine concentration in 24-h and spot urine samples in women. Clin Chem Lab Med. 2009;47(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  • Iseki K. Proteinuria as a predictor of rapid eGFR decline. Nat Rev Nephrol. 2013;9:570–1.

    Article  PubMed  Google Scholar 

  • Jacobs DS, De Mott WR, Willie GR. Urinalysis and clinical microscopy. In: Jacobs DS, Kasten BL, De Mott WR, Wolfson WL, editors. Laboratory test handbook. Baltimore: Williams & Wilkins; 1990. p. 912.

    Google Scholar 

  • Ji C, Sykes L, Paul C, Dary O, et al. Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Rev Panam Salud Publica. 2012;32(4):307–15.

    Article  PubMed  Google Scholar 

  • Johnson R, Feehally J, Floege J. Comprehensive clinical nephrology, 5th ed. Philadelphia: Elsevier Health Sciences; 2014.

    Google Scholar 

  • Jung K. Enzyme activities in urine: how should we express their excretion? A critical literature review. Eur J Clin Chem Clin Biochem. 1991;29:725–9.

    CAS  PubMed  Google Scholar 

  • Kannangara D, Ramasamy S, Indraratna S, et al. Fractional clearance of urate: validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther. 2012;14:R189. Kannangara et al002E.

    Article  PubMed  PubMed Central  Google Scholar 

  • KDIGO. Chapter 1: definition and classification of CKD. Kidney Int Suppl. 2013;3:19. http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf. Accessed on Oct 2014.

    Article  Google Scholar 

  • Lam MO. False hematuria due to bacteriuria. Arch Pathol. 1995;119:717–21.

    CAS  Google Scholar 

  • Lamb EJ, MacKenzie F, Stevens PE. How should proteinuria be detected and measured? Ann Clin Biochem. 2009;46:205–17.

    Article  CAS  PubMed  Google Scholar 

  • Leung YY, Czeto CC, Tam LS, et al. Urine protein-to-creatinine ratio in an untimed urine collection is a reliable measure of proteinuria in lupus nephritis. Rheumatology (Oxford). 2007;46:649–52.

    Article  CAS  Google Scholar 

  • Lohr JA. Use of routine urinalysis in making a presumptive diagnosis of urinary tract infection in children. Pediatr Infect Dis J. 1991;10:646–50.

    Article  CAS  PubMed  Google Scholar 

  • MacIsaac R, Ekinci E, Jerums G. Progressive diabetic nephropathy. How useful is microalbuminuria?: Contra. Kidney Int. 2014;86:50–7.

    Article  PubMed  Google Scholar 

  • Magen D, Sprecher E, Zelikovic I, et al. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int. 2005;67:34–41.

    Article  CAS  PubMed  Google Scholar 

  • Mann SJ, Gerber LM. Estimation of 24-hour sodium excretion from spot urine samples. J Clin Hypertens (Greenwich). 2010;12:174–80.

    Article  CAS  Google Scholar 

  • McCormack M, Dessureault J, Guitard M. The urine specific gravity dipstick: a useful tool to increase fluid intake in stone forming patients. J Urol. 1991;146:1475–7.

    CAS  PubMed  Google Scholar 

  • Methven S, MacGregor MS, Traynor JP, et al. Assessing proteinuria in chronic kidney disease: protein–creatinine ratio versus albumin–creatinine ratio. Nephrol Dial Transplant. 2010;25(9):2991–6.

    Article  CAS  PubMed  Google Scholar 

  • Methven S, MacGregor MS, Traynor JP, Hair M, O’Reilly DJ, Deighan CJ. Comparison of urinary albumin and urinary total protein as predictors of patient outcomes in CKD. Am J Kidney Dis. 2011;57(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  • Mok CC, Tam SC, Kwong YL. Pseudonephrotic syndrome caused by lysozymuria. Ann Intern Med. 1994;121:818.

    Article  CAS  PubMed  Google Scholar 

  • Morales JV, Weber R, Wagner MB, et al. Is morning urinary protein/creatinine ratio a reliable estimator of 24-hour proteinuria in patients with glomerulonephritis and different levels of renal function? J Nephrol. 2004;17(5):666–72.

    CAS  PubMed  Google Scholar 

  • Morcos SK, El-Nahas AM, Brown P, et al. Effect of iodinated water soluble contrast media on urinary protein assays. BMJ. 1992;305:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JA, Martı’n-Cleary C, Gutiérrez E. Editorial reviews haematuria: the forgotten CKD factor? Nephrol Dial Transplant. 2012;27:28–34.

    Article  PubMed  Google Scholar 

  • Muto S, Sugiura S, Nakajima A, et al. Isomorphic red blood cells using automated urine flow cytometry is a reliable method in diagnosis of bladder cancer. Int J Clin Oncol. 2014;19(5):928–34.

    Article  PubMed  Google Scholar 

  • Naresh CN, Hayen A, Craig JC, et al. Day-to-day variability in spot urine protein-creatinine ratio measurements. Am J Kidney Dis. 2012;60:561.

    Article  CAS  PubMed  Google Scholar 

  • Nathan DM, Rosenbaum C, Protasowicki VD. Single-void urine samples can be used to estimate quantitative microalbuminuria. Diabetes Care. 1987;10:414.

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Mattock MB, Dawnay BS, et al. Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol Assess. 2005;9:30.

    Article  Google Scholar 

  • Nolan 3rd CR, Anger MS, Kelleher SP. Eosinophiluria – a new method of detection and definition of the clinical spectrum. N Engl J Med. 1986;315:1516.

    Article  PubMed  Google Scholar 

  • Patel HD, Livsey SA, Swann RA, et al. Can urine dipstick testing for urinary tract infection at point of care reduce laboratory workload? J Clin Pathol. 2005;58:951–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price CP, Newall R, Boyd JC. Use of protein/creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review. Clin Chem. 2005;51:1577–86.

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Beever W, Skov S, et al. Using urinary leucocyte esterase tests as an indicator of infection with gonorrhoea or chlamydia in asymptomatic males in a primary health care setting. Int J STD AIDS. 2014;25(2):138–44.

    Article  PubMed  Google Scholar 

  • Rauta V, Finne P, Fagerudd J, et al. Factors associated with progression of IgA nephropathy are related to renal function – a model for estimating risk of progression in mild disease. Clin Nephrol. 2002;58:85–94.

    Article  CAS  PubMed  Google Scholar 

  • Roscioni SS, Heerspink HJ, Zeeuw D. Microalbuminuria: target for renoprotective therapy PRO. Kidney Int. 2014;86:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Rose BD. Pathophysiology of renal disease. 2nd ed. New York: McGraw-Hill; 1987. p. 11.

    Google Scholar 

  • Ruggenenti P, Remuzzi G. Time to abandon microalbuminuria? Kidney Int. 2006;70:1214–22.

    Article  CAS  PubMed  Google Scholar 

  • Ruggenenti P, Porrini E, Motterlini N, et al. Measurable urinary albumin predicts cardiovascular risk among normoalbuminuric patients with type 2 diabetes. J Am Soc Nephrol. 2012;23:1717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sáez-Torres C, Rodrigo D, Grases F, et al. Urinary excretion of calcium, magnesium, phosphate, citrate, oxalate, and uric acid by healthy schoolchildren using a 12-h collection protocol. Pediatr Nephrol. 2014;29:1201–8.

    Article  PubMed  Google Scholar 

  • Sand TE, Jacobsen S. Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol. 1981;19(6):453–6.

    Article  CAS  PubMed  Google Scholar 

  • Saydah SH, Pavkov ME, Zhang C, et al. Albuminuria prevalence in first morning void compared with previous random urine from adults in the National Health and Nutrition Examination Survey, 2009–2010. Clin Chem. 2013;59(4):675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semeniuk H, Church D. Evaluation of the leukocyte esterase and nitrite urine dipstick screening tests for detection of bacteriuria in women with suspected uncomplicated urinary tract infections. J Clin Microbiol. 1999;37(9):3051–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shidham G, Hebert LA. Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis. 2006;47:8.

    Article  PubMed  Google Scholar 

  • Siegrist D, Hess B, Montandon M, et al. Spezifi sches Gewicht des Urins-vergleichende Messungen mit Teststreifen und Refraktometer bei 340 Morgenurinproben. Schweiz Rundsch Med Prax. 1993;82:112–6.

    CAS  PubMed  Google Scholar 

  • Simerville JA, Maxted WC, Pahira JJ. Urinalysis: a comprehensive review. Am Fam Physician. 2005;71:1153.

    PubMed  Google Scholar 

  • Singer DE, Coley CM, Samet JH, et al. Tests of glycemia in diabetes mellitus: their use in establishing a diagnosis and in treatment. Ann Intern Med. 1989;110:125–37.

    Article  CAS  PubMed  Google Scholar 

  • Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825.

    Article  PubMed  Google Scholar 

  • Strasinger S, Di Lorenzo M. Urinalysis and body fluids, 6th ed. Philadelphia: F. A. Davis Company; 2014.

    Google Scholar 

  • Sutton JM. Evaluation of hematuria in adults. JAMA. 1990;263:2475–80.

    Article  CAS  PubMed  Google Scholar 

  • Taboulet P, Deconinck N, Thurel A, et al. Correlation between urine ketones (acetoacetate) and capillary blood ketones (3-beta-hydroxybutyrate) in hyperglycaemic patients. Diabetes Metab. 2007;33(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Okamura T, Miura K, et al. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens. 2002;16:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Tapp DC, Copley JB. Effect of red blood cell lysis on protein quantitation in hematuric states. Am J Nephrol. 1988;8:190.

    Article  CAS  PubMed  Google Scholar 

  • Turin TC, James M, Ravani P, et al. Proteinuria and rate of change in kidney function in a community-based population. J Am Soc Nephrol. 2013;24(10):1661–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivante A, Afek A, Frenkel-Nir Y, et al. Persistent asymptomatic isolated microscopic hematuria in Israeli adolescents and young adults and risk for end-stage renal disease. JAMA. 2011;306:729–36.

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Mohebbi N. Urinary pH and stone formation. J Nephrol. 2010;23(16):S165–9.

    PubMed  Google Scholar 

  • Wald R. Urinalysis in the diagnosis of kidney disease. In Uptodate. http://www.uptodate.com/contents/search. Accessed Oct 2014.

  • Wald R, Bell CM, Nisenbaum R, et al. Interobserver reliability of urine sediment interpretation. Clin J Am Soc Nephrol. 2009;4:567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wise KA, Sagert LA, Grammens GL. Urine leukocyte esterase and nitrite tests as an aid to predict urine culture results. Lab Med. 1984;15(3):186–7.

    Article  Google Scholar 

  • Witte EC, Lambers Heerspink HJ, de Zeeuw D, et al. First morning voids are more reliable than spot urine samples to assess microalbuminuria. J Am Soc Nephrol. 2009;20:436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolhandler S, Pels RJ, Bor DH, Himmelstein DU, Lawrence RS. Dipstick urinalysis screening of asymptomatic adults for urinary tract disorders. I. Hematuria and proteinuria. JAMA. 1989;262:1214–9.

    Article  CAS  PubMed  Google Scholar 

  • Young DS. Effects of drugs on clinical laboratory tests, vol. 3. 3rd ed. Washington, DC: American Association for Clinical Chemistry Press; 1990. p. 356–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Guedes-Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Guedes-Marques, M., Botelho, C., Maia, P., Mendes, T., Carreira, A. (2016). Random Spot Urine Markers for Kidney and Their Applications. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_24

Download citation

Publish with us

Policies and ethics