Skip to main content

Exercise -Induced Pancreatic Islet Adaptations in Health and Disease

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

According, to the World Health Organization (WHO), overweight and obesity represent a rapidly growing threat to worldwide health. Currently, more than 1.4 billion adults are overweight. Although genetic factors account for some cases of obesity, it is evident that a drastic change in lifestyle is a main cause that accounts for the worldwide obesity and type 2 diabetes (T2D) prevalence. Physical exercise prevents or attenuates main obesity outcomes such as fat accumulation, insulin resistance, dyslipidemia, hypertension, and glucose intolerance. Considering the relevance of cells and the benefits of exercise to the onset of T2D, in the present chapter, we review several studies that have evaluated the effects of exercise training on β-cell function and survival in health, obesity, and diabetes. Although the literature still lacks conclusive data in this field, exercise training that enhances β-cell survival is a common outcome in all of the studies. Exercise training-induced alterations on β-cell functions are more controversial. Generally, the studies indicate that in healthy and obese insulin-resistant subjects, exercise decreases nutrient-induced insulin secretion (associated with a correspondent increase in insulin action); however, increased insulin secretion occurs in T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreazzi AE, Scomparin DX, Mesquita FP, Balbo SL, Gravena C, De Oliveira JC, Rinaldi W, Garcia RM, Grassiolli S, Mathias PC (2009) Swimming exercise at weaning improves glycemic control and inhibits the onset of monosodium l-glutamate-obesity in mice. Eur J Endocrinol 201:351–359

    Article  CAS  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143

    Article  PubMed  CAS  Google Scholar 

  • Balbo SL, Bonfleur ML, Carneiro EM, Amaral ME, Filiputti E, Mathias PC (2002) Parasympathetic activity changes insulin response to glucose and neurotransmitters. Diabetes Metab 28:3S13–3S17 (discussion 13S108-112)

    PubMed  CAS  Google Scholar 

  • Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, Brito MN, Andreazzi AE, Mathias PC, Torrezan R (2007) Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine 31:142–148

    Article  PubMed  CAS  Google Scholar 

  • Bertram R, Satin LS, Pedersen MG, Luciani DS, Sherman A (2007) Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys J 92:1544–1555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ (2001) Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. J Am Med Assoc 286:1218–1227

    Article  CAS  Google Scholar 

  • Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010:520258

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns N, Finucane FM, Hatunic M, Gilman M, Murphy M, Gasparro D, Mari A, Gastaldelli A, Nolan JJ (2007) Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in β cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 50:1500–1508

    Article  PubMed  CAS  Google Scholar 

  • Calegari VC, Zoppi CC, Rezende LF, Silveira LR, Carneiro EM, Boschero AC (2011) Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J Endocrinol 208:257–264

    PubMed  CAS  Google Scholar 

  • Calegari VC, Abrantes JL, Silveira LR, Paula FM, Costa JM Jr, Rafacho A, Velloso LA, Carneiro EM, Bosqueiro JR, Boschero AC, Zoppi CC (2012) Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J Appl Physiol 112:711–718

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Utzschneider KM, Boyko EJ, Asberry PJ, Hull RL, Kodama K, Callahan HS, Matthys CC, Leonetti DL, Schwartz RS, Kahn SE, Fujimoto WY (2005) A reduced-fat diet and aerobic exercise in Japanese Americans with impaired glucose tolerance decreases intra-abdominal fat and improves insulin sensitivity but not β-cell function. Diabetes 54:340–347

    Article  PubMed  CAS  Google Scholar 

  • Chentouf M, Dubois G, Jahannaut C, Castex F, Lajoix AD, Gross R, Peraldi-Roux S (2011) Excessive food intake, obesity and inflammation process in Zucker fa/fa rat pancreatic islets. PLoS One 6:e22954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiasson JL, Rabasa-Lhoret R (2004) Prevention of type 2 diabetes: insulin resistance and β-cell function. Diabetes 53(Suppl 3):S34–S38

    Article  PubMed  CAS  Google Scholar 

  • Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P (2012) What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 55:542–551

    Article  PubMed  CAS  Google Scholar 

  • Choi SB, Jang JS, Hong SM, Jun DW, Park S (2006) Exercise and dexamethasone oppositely modulate β-cell function and survival via independent pathways in 90 % pancreatectomized rats. J Endocrinol 190:471–482

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Gregersen S, Kruhoeffer M, Agger A, Xiao J, Jeppesen PB, Orntoft T, Ploug T, Galbo H, Hermansen K (2005) Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis. Metab Clin Exp 54:1571–1581

    Article  PubMed  CAS  Google Scholar 

  • Coskun O, Ocakci A, Bayraktaroglu T, Kanter M (2004) Exercise training prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Tohoku J Exp Med 203:145–154

    Article  PubMed  CAS  Google Scholar 

  • Dawson R, Pelleymounter MA, Millard WJ, Liu S, Eppler B (1997) Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. Am J Physiol 273:E202–E206

    PubMed  CAS  Google Scholar 

  • de Souza CT, Nunes WM, Gobatto CA, de Mello MA (2003) Insulin secretion in monosodium glutamate (MSG) obese rats submitted to aerobic exercise training. Physiol Chem Phys Med NMR 35:43–53

    PubMed  Google Scholar 

  • Dela F, von Linstow ME, Mikines KJ, Galbo H (2004) Physical training may enhance β-cell function in type 2 diabetes. Am J Physiol Endocrinol Metab 287:E1024–E1031

    Article  PubMed  CAS  Google Scholar 

  • Delghingaro-Augusto V, Decary S, Peyot ML, Latour MG, Lamontagne J, Paradis-Isler N, Lacharite-Lemieux M, Akakpo H, Birot O, Nolan CJ, Prentki M, Bergeron R (2012) Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat. Am J Physiol Endocrinol Metab 302:E254–E264

    Article  PubMed  CAS  Google Scholar 

  • Doliba NM, Qin W, Najafi H, Liu C, Buettger CW, Sotiris J, Collins HW, Li C, Stanley CA, Wilson DF, Grimsby J, Sarabu R, Naji A, Matschinsky FM (2012) Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 302:E87–E102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Drucker DJ (2013) Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes 62(10):3316–3323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubuc PU, Cahn PJ, Willis P (1984) The effects of exercise and food restriction on obesity and diabetes in young ob/ob mice. Int J Obes 8:271–278

    PubMed  CAS  Google Scholar 

  • Farrell PA, Caston AL, Rodd D (1991) Changes in insulin response to glucose after exercise training in partially pancreatectomized rats. J Appl Physiol 70:1563–1568

    PubMed  CAS  Google Scholar 

  • Fluckey JD, Kraemer WJ, Farrell PA (1995) Pancreatic-islet insulin-secretion is increased after resistance exercise in rats. J Appl Physiol 79:1100–1105

    PubMed  CAS  Google Scholar 

  • Fridlyand LE, Philipson LH (2010) Glucose sensing in the pancreatic β cell: a computational systems analysis. Theor Biol Med Model 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocr Rev 22:565–604

    PubMed  CAS  Google Scholar 

  • Grassiolli S, Bonfleur ML, Scomparin DX, de Freitas Mathias PC (2006) Pancreatic islets from hypothalamic obese rats maintain KATP channel-dependent but not -independent pathways on glucose-induced insulin release process. Endocrine 30:191–196

    Article  PubMed  CAS  Google Scholar 

  • Guldstrand M, Ahren B, Adamson U (2003) Improved β-cell function after standardized weight reduction in severely obese subjects. Am J Physiol Endocrinol Metab 284:E557–E565

    PubMed  CAS  Google Scholar 

  • Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO (2011) Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 1:921–940

    PubMed  Google Scholar 

  • Howarth FC, Marzouqi FM, Al Saeedi AM, Hameed RS, Adeghate E (2009) The effect of a heavy exercise program on the distribution of pancreatic hormones in the streptozotocin-induced diabetic rat. J Pancreas 10:485–491

    Google Scholar 

  • Huang HH, Farmer K, Windscheffel J, Yost K, Power M, Wright DE, Stehno-Bittel L (2011) Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp Diabetes Res 2011:481427

    PubMed  PubMed Central  Google Scholar 

  • Jacovetti C, Abderrahmani A, Parnaud G, Jonas JC, Peyot ML, Cornu M, Laybutt R, Meugnier E, Rome S, Thorens B, Prentki M, Bosco D, Regazzi R (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kahn SE (2003) The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19

    Article  PubMed  CAS  Google Scholar 

  • Kahn SE, Larson VG, Beard JC, Cain KC, Fellingham GW, Schwartz RS, Veith RC, Stratton JR, Cerqueira MD, Abrass IB (1990) Effect of exercise on insulin action, glucose tolerance, and insulin secretion in aging. Am J Physiol 258:E937–E943

    PubMed  CAS  Google Scholar 

  • Khan A, Raza S, Khan Y, Aksoy T, Khan M, Weinberger Y, Goldman J (2012) Current updates in the medical management of obesity. Recent Patents Endocr Metab Immune Drug Discov 6:117–128

    Article  CAS  Google Scholar 

  • Kibenge MT, Chan CB (2002) The effects of high-fat diet on exercise-induced changes in metabolic parameters in Zucker fa/fa rats. Metab Clin Exp 51:708–715

    Article  PubMed  CAS  Google Scholar 

  • King DS, Dalsky GP, Staten MA, Clutter WE, Van Houten DR, Holloszy JO (1987) Insulin action and secretion in endurance-trained and untrained humans. J Appl Physiol 63:2247–2252

    PubMed  CAS  Google Scholar 

  • Kiraly MA, Bates HE, Yue JT, Goche-Montes D, Fediuc S, Park E, Matthews SG, Vranic M, Riddell MC (2007) Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: the effects of stress and non-volitional exercise. Metab Clin Exp 56:732–744

    Article  PubMed  CAS  Google Scholar 

  • Kiraly MA, Bates HE, Kaniuk NA, Yue JT, Brumell JH, Matthews SG, Riddell MC, Vranic M (2008) Swim training prevents hyperglycemia in ZDF rats: mechanisms involved in the partial maintenance of β-cell function. Am J Physiol Endocrinol Metab 294:E271–E283

    Article  PubMed  CAS  Google Scholar 

  • Koranyi LI, Bourey RE, Slentz CA, Holloszy JO, Permutt MA (1991) Coordinate reduction of rat pancreatic islet glucokinase and proinsulin mRNA by exercise training. Diabetes 40:401–404

    Article  PubMed  CAS  Google Scholar 

  • Krause Mda S, De Bittencourt PI Jr (2008) Type 1 diabetes: can exercise impair the autoimmune event? The l-arginine/glutamine coupling hypothesis. Cell Biochem Funct 26:406–433

    Article  PubMed  Google Scholar 

  • Krotkiewski M, Lonnroth P, Mandroukas K, Wroblewski Z, Rebuffescrive M, Holm G, Smith U, Bjorntorp P (1985) The effects of physical-training on insulin-secretion and effectiveness and on glucose-metabolism in obesity and type-2 (non-insulin-dependent) diabetes-mellitus. Diabetologia 28:881–890

    Article  PubMed  CAS  Google Scholar 

  • Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI, Anton S, Smith SR, Alfonso A, Ravussin E (2006) Effect of calorie restriction with or without exercise on insulin sensitivity, β-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care 29:1337–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite Nde C, Ferreira TR, Rickli S, Borck PC, Mathias PC, Emilio HR, Grassiolli S (2013) Glycolytic and mitochondrial metabolism in pancreatic islets from MSG-treated obese rats subjected to swimming training. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 31:242–256

    Article  Google Scholar 

  • Li L, Pan R, Li R, Niemann B, Aurich AC, Chen Y, Rohrbach S (2011) Mitochondrial biogenesis and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 60:157–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    Article  PubMed  CAS  Google Scholar 

  • Maarbjerg SJ, Sylow L, Richter EA (2011) Current understanding of increased insulin sensitivity after exercise – emerging candidates. Acta Physiol (Oxf) 202:323–335

    Article  CAS  Google Scholar 

  • Macho L, Fickova M, Jezova ZS (2000) Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res/Acad Sci Bohemoslovaca 49(Suppl 1):S79–S85

    CAS  Google Scholar 

  • Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic β-cells. Nature 414:807–812

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Zhang Y, Jijakli H, Courtois P, Sener A (2004) Enzyme-to-enzyme channelling in the early steps of glycolysis in rat pancreatic islets. Int J Biochem Cell Biol 36:1510–1520

    Article  PubMed  CAS  Google Scholar 

  • McTaggart JS, Clark RH, Ashcroft FM (2010) The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol 588:3201–3209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meier JJ, Bonadonna RC (2013) Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miranda RA, Branco RC, Gravena C, Barella LF, da Silva Franco CC, Andreazzi AE, de Oliveira JC, Picinato MC, de Freitas Mathias PC (2013) Swim training of monosodium l-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets. Endocrine 43:571–578

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AR, Pedersen BK (2007) The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Meta 32:833–839

    Google Scholar 

  • Oliveira CA, Paiva MF, Mota CA, Ribeiro C, Leme JA, Luciano E, Mello MA (2010) Exercise at anaerobic threshold intensity and insulin secretion by isolated pancreatic islets of rats. Islets 2:240–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  PubMed  CAS  Google Scholar 

  • Ortsater H, Liss P, Akerman KE, Bergsten P (2002) Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflug Arch Eur J Physiol 444:506–512

    Article  Google Scholar 

  • Park SM, Hong SM, Lee JE, Sung SR (2007) Exercise improves glucose homeostasis that has been impaired by a high-fat diet by potentiating pancreatic β-cell function and mass through IRS2 in diabetic rats. J Appl Physiol 103:1764–1771

    Article  PubMed  CAS  Google Scholar 

  • Park S, Hong SM, Sung SR (2008) Exendin-4 and exercise promotes β-cell function and mass through IRS2 induction in islets of diabetic rats. Life Sci 82:503–511

    Article  PubMed  CAS  Google Scholar 

  • Pold R, Jensen LS, Jessen N, Buhl ES, Schmitz O, Flyvbjerg A, Fujii N, Goodyear LJ, Gotfredsen CF, Brand CL, Lund S (2005) Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54:928–934

    Article  PubMed  CAS  Google Scholar 

  • Porte D Jr (2001) Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications. Diabetes Metab Res Rev 17:181–188

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18:162–185

    Article  PubMed  CAS  Google Scholar 

  • Rafacho A, Abrantes JL, Ribeiro DL, Paula FM, Pinto ME, Boschero AC, Bosqueiro JR (2011) Morphofunctional alterations in endocrine pancreas of short- and long-term dexamethasone-treated rats. Horm Metab Res 43:275–281

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Torres J, Thompson MS, Philipson LH (2012) SUMO downregulates GLP-1-stimulated cAMP generation and insulin secretion. Am J Physiol Endocrinol Metab 302:E714–E723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ravier MA, Cheng-Xue R, Palmer AE, Henquin JC, Gilon P (2010) Subplasmalemmal Ca2+ measurements in mouse pancreatic β cells support the existence of an amplifying effect of glucose on insulin secretion. Diabetologia 53:1947–1957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reitman JS, Vasquez B, Klimes I, Nagulesparan M (1984) Improvement of glucose-homeostasis after exercise training in non-insulin-dependent diabetes. Diabetes Care 7:434–441

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids 43:1791–1801

    Article  PubMed  CAS  Google Scholar 

  • Roberts CK, Hevener AL, Barnard RJ (2013) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3:1–58

    PubMed  PubMed Central  Google Scholar 

  • Rousseau-Migneron S, Turcotte L, Tancrede G, Nadeau A (1988) Transient increase in basal insulin levels in severely diabetic rats submitted to physical training. Diabetes Res 9:97–100

    PubMed  CAS  Google Scholar 

  • Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123:2764–2772

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salem MA, Aboelasrar MA, Elbarbary NS, Elhilaly RA, Refaat YM (2010) Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr 2:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider SH, Amorosa LF, Khachadurian AK, Ruderman NB (1984) Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia 26:355–360

    Article  PubMed  CAS  Google Scholar 

  • Seino S (2012) Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 55:2096–2108

    Article  PubMed  CAS  Google Scholar 

  • Sennott J, Morrissey J, Standley PR, Broderick TL (2008) Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes. Pathophysiol 15:173–179

    Article  CAS  Google Scholar 

  • Shima K, Zhu M, Noma Y, Mizuno A, Murakami T, Sano T, Kuwajima M (1997) Exercise training in Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus: effects on the β-cell mass, insulin content and fibrosis in the pancreas. Diabetes Res Clin Pract 35:11–19

    Article  PubMed  CAS  Google Scholar 

  • Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, Hawk VH, Muehlbauer MJ, Samsa GP, Nelson RC, Huffman KM, Bales CW, Houmard JA, Kraus WE (2011) Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metab 301:E1033–E1039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Svidnicki PV, de Carvalho LN, Venturelli AC, Camargo RL, Vicari MR, de Almeida MC, Artoni RF, Nogaroto V, Grassiolli S (2013) Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats. Acta Physiol (Oxf) 209:34–44

    Google Scholar 

  • Tancrede G, Rousseau-Migneron S, Nadeau A (1982) Beneficial effects of physical training in rats with a mild streptozotocin-induced diabetes mellitus. Diabetes 31:406–409

    Article  PubMed  CAS  Google Scholar 

  • Thorens B (2010) Central control of glucose homeostasis: the brain-endocrine pancreas axis. Diabetes Metab 36(Suppl 3):S45–S49

    Article  PubMed  CAS  Google Scholar 

  • Thorens B (2011) Of fat, β cells, and diabetes. Cell Metab 14:439–440

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama Y, Sturis J, DePaoli AM, Takeda J, Stoffel M, Tang J, Sun X, Polonsky KS, Bell GI (1995) Evolution of β-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Trovati M, Carta Q, Cavalot F, Vitali S, Banaudi C, Lucchina RG, Fiocchi F, Emanuelli G, Lenti G (1984) Influence of physical-training on blood-glucose control, glucose-tolerance, insulin-secretion, and insulin action in non-insulin-dependent diabetic-patients. Diabetes Care 7:416–420

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Manabe Y, Yamada K, Furuichi Y, Hosaka M, Fujii NL (2013) Chronic exercise enhances insulin secretion ability of pancreatic islets without change in insulin content in non-diabetic rats. Biochem Biophys Res Commun 430:676–682

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Urano Y, Sakurai T, Kizaki T, Hitomi Y, Ohno H, Izawa T (2003) Enhanced expression of neuronal nitric oxide synthase in islets of exercise-trained rats. Biochem Biophys Res Commun 312:794–800

    Article  PubMed  CAS  Google Scholar 

  • Utzschneider KM, Carr DB, Barsness SM, Kahn SE, Schwartz RS (2004) Diet-induced weight loss is associated with an improvement in β-cell function in older men. J Clin Endocrinol Metab 89:2704–2710

    Article  PubMed  CAS  Google Scholar 

  • Vianna CR, Coppari R (2011) A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis. Endocrinology 152:11–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Villareal DT, Banks MR, Patterson BW, Polonsky KS, Klein S (2008) Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity (Silver Spring) 16:1349–1354

    Article  CAS  Google Scholar 

  • Wagener A, Schmitt AO, Brockmann GA (2012) Early and late onset of voluntary exercise have differential effects on the metabolic syndrome in an obese mouse model. Exp Clin Endocr Diab 120:591–597

    Article  CAS  Google Scholar 

  • Westerlund J, Bergsten P (2001) Glucose metabolism and pulsatile insulin release from isolated islets. Diabetes 50:1785–1790

    Article  PubMed  CAS  Google Scholar 

  • Wirth A, Diehm C, Mayer H, Morl H, Vogel I, Bjorntorp P, Schlierf G (1981) Plasma C-peptide and insulin in trained and untrained subjects. J Appl Physiol 50:71–77

    PubMed  Google Scholar 

  • Zoppi CC, Calegari VC, Silveira LR, Carneiro EM, Boschero AC (2011) Exercise training enhances rat pancreatic islets anaplerotic enzymes content despite reduced insulin secretion. Eur J Appl Physiol 111:2369–2374

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Cesar Zoppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Grassiolli, S., Boschero, A.C., Carneiro, E.M., Zoppi, C.C. (2015). Exercise -Induced Pancreatic Islet Adaptations in Health and Disease. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_32

Download citation

Publish with us

Policies and ethics