Skip to main content

Functional and Genetic Diversity of Toxins in Sea Anemones

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Sea anemones are benthic, sessile cnidarians that use venom for prey capture, defense, digestion, and intraspecific competition. Lacking venom glands, sea anemones produce venom locally in the tissue of use and deliver it via subcellular structures called nematocysts. The majority of venoms characterized from anemones are unique to the lineage. Although there are many components of venom that are only known from particular lineages, these are generally not associated with structures that are unique to those lineages. The few kinds of venoms that have been explored in an evolutionary context appear to evolve under negative selection, although positive selection may occur on select residues within the molecule. Because there is a positive relationship between study effort and number of toxins known from any lineage, it is likely that broader taxonomic representation in studies of anemone venom will increase the number of genes and molecules reported from anemones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderluh G, Sepčić K, Turk T, Maček P. Cytolytic proteins from cnidarians-an overview. Acta Chim Slov. 2011;58(4):724–9.

    CAS  PubMed  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M. The magnitude of global marine species diversity. Curr Biol. 2012;22(23):2189–202.

    Article  CAS  PubMed  Google Scholar 

  • Bakrač B, Anderluh G. Molecular mechanism of sphingomyelin-specific membrane binding and pore formation by actinoporins. In: Anderluh G, Lakey JH, editors. Proteins membrane binding and pore formation. New York: Springer; 2010.

    Google Scholar 

  • Balasubramanian PG, Beckmann A, Warnken U, Schnölzer M, Schüler A, Bornberg-Bauer E, Holstein TW, Özbek S. Proteome of hydra nematocyst. J Biol Chem. 2012;287(13):9672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basulto A, Pérez VM, Noa Y, Varela C, Otero AJ, Pico MC. Immunohistochemical targeting of sea anemone cytolysins on tentacles, mesenteric filaments and isolated nematocysts of Stichodactyla helianthus. J Exp Zool A Comp Exp Biol. 2006;305(3):253–8.

    Article  PubMed  Google Scholar 

  • Bigger CH. The role of nematocysts in anthozoan aggression. In: Hessinger DA, Lenhoff DM, editors. The biology of nematocysts. San Diego: Academic; 1988.

    Google Scholar 

  • Cantacuzene J. Immunite d’Eupagurus prideauxii, vis-a-vis des poisons de l’Adamsia palliata. C R Séances Soc Biol Fil. 1925;92:1133–6.

    CAS  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Cosmovici NL. Action convulsivante des poisons d’Adamsia palliata sur le Carcinus moenas. C R Séances Soc Biol Fil. 1925;92:1469–70.

    CAS  Google Scholar 

  • Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL. The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 2007;1668:127–82.

    Google Scholar 

  • Doumenc D. Morphological views on devagination of spirocyst in Actinia equina L. J Microsc. 1971;12(2):263.

    Google Scholar 

  • Doumenc DA, Van Praët M. Ordre des actiniaires, ordre des ptychodactiniaires, ordre des corallimorphaires. In: Doumenc D, editor. Traité de zoologie: anatomie, systématique, biologie. Paris: Masson; 1987.

    Google Scholar 

  • Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012;10(8):1812–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.

    Article  CAS  PubMed  Google Scholar 

  • Geller JB, Walton ED. Breaking up and getting together: evolution of symbiosis and cloning by fission in sea anemones (genus Anthopleura). Evolution. 2001;55(9):1781–94.

    Article  CAS  PubMed  Google Scholar 

  • Hines DE, Pawlik JR. Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): is the sting the only thing? Mar Biol. 2012;159(2):389–98.

    Article  Google Scholar 

  • Honma T, Hasegawa Y, Ishida M, Nagai H, Nagashima Y, Shiomi K. Isolation and molecular cloning of novel peptide toxins from the sea anemone Antheopsis maculata. Toxicon. 2005;45(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  • Ishida M, Yokoyama A, Shimakura K, Nagashima Y, Shiomi K. Halcurin, a polypeptide toxin from the sea anemone Halcurias sp., with a structural resemblance to type 1 and 2 toxins. Toxicon. 1997;35(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  • Jouiaei M, Sunagar K, Gross AF, Scheib H, Alewood PF, Moran Y, Fry BG. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol Biol Evol. 2015;32(6):1598–610.

    Article  CAS  PubMed  Google Scholar 

  • Karplus I, Fiedler GC, Ramcharan P. The intraspecific fighting behavior of the Hawaiian boxer crab, Lybia edmondsoni-fighting with dangerous weapons? Symbiosis (Rehovot). 1998;24:287–302.

    Google Scholar 

  • Kimura A, Sakaguchi E, Nonaka M. Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology. 2009;214(3):165–78.

    Google Scholar 

  • Maček P. Polypeptide cytolytic toxins from sea anemones (Actiniaria). FEMS Microbiol Immunol. 1992;5:121–9.

    Google Scholar 

  • Macrander J, Brugler MR, Daly M. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps. BMC Genomics. 2015a;16(1):1.

    Article  CAS  Google Scholar 

  • Macrander J, Broe M, Daly M. Multi-copy venom genes hidden in de novo transcriptome assemblies, a cautionary tale with the snakelocks sea anemone Anemonia sulcata (Pennant, 1977). Toxicon. 2015b;108:184–8.

    Article  CAS  PubMed  Google Scholar 

  • Mariscal RN. Nematocysts. In: Muscatine L, Lenhoff HM, editors. Coelenterate biology: reviews and new perspectives. New York: Academic; 1974.

    Google Scholar 

  • Mebs D. Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans. Toxicon. 2009;54(8):1071–4.

    Article  CAS  PubMed  Google Scholar 

  • Meinardi E, Florinchristensen M, Paratcha G, Azcurra JM, Florinchristensen J. The molecular basis of the self/non-self selectivity of a coelenterate toxin. Biochem Biophys Res Commun. 1995;216(1):348–54.

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TC. The innate immune repertoire in Cnidaria-ancestral complexity and stochastic gene loss. Genome Biol. 2007;8(4):R59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minagawa S, Sugiyama M, Ishida M, Nagashima Y, Shiomi K. Kunitz-type protease inhibitors from acrorhagi of three species of sea anemones. Comp Biochem Physiol B Biochem Mol Biol. 2008;150(2):240–5.

    Article  PubMed  Google Scholar 

  • Monastyrnaya MM, Zykova TA, Apalikova OV, Shwets TV, Kozlovskaya EP. Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus. Toxicon. 2002;40(8):1197–217.

    Article  CAS  PubMed  Google Scholar 

  • Moran Y, Gurevitz M. When positive selection of neurotoxin genes is missing. FEBS J. 2006;273(17):3886–92.

    Article  CAS  PubMed  Google Scholar 

  • Moran Y, Weinberger H, Sullivan JC, Reitzel AM, Finnerty JR, Gurevitz M. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome. Mol Biol Evol. 2008;25(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  • Moran Y, Weinberger H, Lazarus N, Gur M, Kahn R, Gordon D, Gurevitz M. Fusion and retrotransposition events in the evolution of the sea anemone Anemonia viridis neurotoxin genes. J Mol Evol. 2009;69(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  • Moran Y, Genikhovich G, Gordon D, Wienkoop S, Zenkert C, Özbek S, Technau U, Gurevitz M. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc R Soc Lond B Biol Sci. 2011. doi:10.1098/rspb.2011.1731.

    Google Scholar 

  • Moran Y, Praher D, Schlesinger A, Ayalon A, Tal Y, Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. Marine Biotechnol. 2013;15(3):329–39.

    Article  CAS  Google Scholar 

  • Nevalainen TJ, Peuravuori HJ, Quinn RJ, Llewellyn LE, Benzie JA, Fenner PJ, Winkel KD. Phospholipase A2 in Cnidaria. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(4):731–5.

    Article  PubMed  Google Scholar 

  • Orts DJ, Peigneur S, Madio B, Cassoli JS, Montandon GG, Pimenta A, Bicudo JE, Freitas JC, Zaharenko AJ, Tytgat J. Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum. Mar Drugs. 2013;11(3):655–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The dynamically evolving nematocyst content of an anthozoan, a scyphozoan, and a hydrozoan. Mol Biol Evol. 2015;32(3):740–53.

    Article  CAS  PubMed  Google Scholar 

  • Reft AJ, Daly M. Morphology, distribution, and evolution of apical structure of nematocysts in Hexacorallia. J Morphol. 2012;273(2):121–36.

    Article  PubMed  Google Scholar 

  • Rodríguez AA, Cassoli JS, Sa F, Dong ZQ, de Freitas JC, Pimenta AM, de Lima ME, Konno K, Lee SM, Garateix A, Zaharenko AJ. Peptide fingerprinting of the neurotoxic fractions isolated from the secretions of sea anemones Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach. Peptides. 2012;34(1):26–38.

    Article  PubMed  Google Scholar 

  • Rodríguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A, Gusmão L, Häussermann V, Reft A, Daly M. Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One. 2014;9(5):e96998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross DM. Protection of hermit crabs (Dardanus spp.) from octopus by commensal sea anemones (Calliactis spp.). Nature. 1971;230:401–2.

    Article  CAS  PubMed  Google Scholar 

  • Ross DM. Evolutionary aspects of associations between crabs and sea anemones. In: Vernberg WA, editor. Symbiosis in the Sea. Columbia: University of South Carolina Press; 1974.

    Google Scholar 

  • Shick JM. A functional biology of sea anemones. New York: Springer; 1991.

    Book  Google Scholar 

  • Sunagar K, Moran Y. The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet. 2015;11(10):e1005596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunagar K, Casewell NR, Varma S, Kolla R, Antunes A, Moran Y. Deadly innovations: unraveling the molecular evolution of animal venoms. In: Venom genomics and proteomics. 2016. p. 1–27.

    Google Scholar 

  • Vader W. Associations between amphipods (Crustacea: Amphipoda) and sea anemones (Anthozoa, Actiniaria). Mem Aust Mus. 1983;18:141–53.

    Article  Google Scholar 

  • Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M. Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One. 2015;10(10):e0139068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Gao B, Zhu S. Independent origins of scorpion toxins affecting potassium and sodium channels. In: Gopalakrishnakone P, Malhotra A, editors. Evolution of venomous animals and their toxins. Oxford: Oxford University Press; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marymegan Daly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Daly, M. (2017). Functional and Genetic Diversity of Toxins in Sea Anemones. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_17

Download citation

Publish with us

Policies and ethics