Skip to main content

Snake Venom Toxins Targeted at the Nervous System

  • Reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

One of the main venom targets in a prey organism is the nervous system. The disturbance of this system kills or paralyzes a prey effectively. To achieve this task, snake venoms contain an array of peptide and protein toxins called neurotoxins which belong to several structural types and possess diverse biological activities. The most abundant neurotoxin groups are three-finger toxins and phospholipases A2, while other less represented groups include dendrotoxins of BPTI–Kunitz-type family, CRISPs (cysteine-rich secretory proteins), acetylcholine esterase, and peptide toxins. Neurotoxins affect different departments of the nervous system including both the central nervous system (CNS) and the peripheral nervous system (PNS). The toxins impairing the somatic PNS are acting at presynaptic site (β-neurotoxicity) or postsynaptic site (α-neurotoxicity); there are neurotoxins active inside a synaptic cleft as well. Effectors of sympathetic and parasympathetic systems of the autonomic PNS are also found in the venoms. Snake venom contains also neurotrophins and blockers of several types of ion channels, including effectors of sensory systems. Acting at different sites of the nervous system and being complementary, neurotoxins produce a cumulative effect resulting in very efficient oppression of the prey or predator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo V, Viera L, Silveira R, Dajas F. Effects of local inhibition of locus coeruleus acetylcholinesterase by fasciculin in rats. Neurosci Lett. 1989;98(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  • Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba. Toxicon. 2013;75:160–7.

    Google Scholar 

  • Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL, Basbaum AI, Julius D. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 2011;479(7373):410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang LS, Chung C, Wu BN, Yang CC. Characterization and gene organization of Taiwan banded krait (Bungarus multicinctus) gamma-bungarotoxin. J Protein Chem. 2002;21(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Li XB, Xiong YL. Effects of a nerve growth factor isolated and purified from the venom of Naja naja atra on injured sciatic nerve in the adult cat. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35(2):194–7.

    PubMed  Google Scholar 

  • Chen ZX, Zhang HL, Gu ZL, Chen BW, Han R, Reid PF, Raymond LN, Qin ZH. A long-form alpha-neurotoxin from cobra venom produces potent opioid-independent analgesia. Acta Pharmacol Sin. 2006;27(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  • Cheng BC, Zhou XP, Zhu Q, Gong S, Qin ZH, Reid PF, Raymond LN, Yin QZ, Jiang XH. Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon. 2009;54(3):224–32.

    Article  CAS  PubMed  Google Scholar 

  • Chiappinelli VA. Kappa-bungarotoxin: a probe for the neuronal nicotinic receptor in the avian ciliary ganglion. Brain Res. 1983;277(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  • Chiappinelli VA, Dryer SE. Nicotinic transmission in sympathetic ganglia: blockade by the snake venom neurotoxin kappa-bungarotoxin. Neurosci Lett. 1984;50(1–3):239–44.

    Article  CAS  PubMed  Google Scholar 

  • Chung C, Wu BN, Yang CC, Chang LS. Muscarinic toxin-like proteins from Taiwan banded krait (Bungarus multicinctus) venom: purification, characterization and gene organization. Biol Chem. 2002;383(9):1397–406.

    Article  CAS  PubMed  Google Scholar 

  • Dajas-Bailador F, Costa G, Emmett S, Bonilla C, Dajas F. Acetylcholinesterase inhibitors block acetylcholine-evoked release of dopamine in rat striatum, invivo. Brain Res. 1996;722(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  • Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, Debayle D, Friend V, Alloui A, Lazdunski M, Lingueglia E. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490(7421):552–5.

    Article  CAS  PubMed  Google Scholar 

  • Doley R, Mackessy SP, Kini RM. Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins. BMC Evol Biol. 2009;9:146. doi:10.1186/1471-2148-9-146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl ST, Birrell GW, Wallis TP, St Pierre LD, Masci PP, de Jersey J, Gorman JJ, Lavin MF. Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics. 2006;6(24):6554–65.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez VP, Konno K, Chacur M, Sampaio SC, Picolo G, Brigatte P, Zambelli VO, Cury Y. Crotalphine induces potent antinociception in neuropathic pain by acting at peripheral opioid receptors. Eur J Pharmacol. 2008;594(1–3):84–92.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez VP, Zambelli VO, Picolo G, Chacur M, Sampaio SC, Brigatte P, Konno K, Cury Y. The peripheral L-arginine-nitric oxide-cyclic GMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav Pharmacol. 2012;23(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Stow J, Sorensen R, Dolly JO, Owen D. Blockade by dendrotoxin homologues of voltage-dependent K+ currents in cultured sensory neurones from neonatal rats. Br J Pharmacol. 1994;113(3):959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AL. Twenty years of dendrotoxins. Toxicon. 2001;39(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Chuang CC, Chuang LC, Yu HM, Wang KT, Chiou SH, Wu SH. Protein engineering of venom toxins by synthetic approach and NMR dynamic simulation: status of basic amino acid residues in waglerin I. Biochem Biophys Res Commun. 1996;227(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Zheng JB, Xu Y, Song HT, Yu CX. A snake venom phospholipase A2 with high affinity for muscarinic acetylcholine receptors acts on guinea pig ileum. Toxicon. 2008;51(6):1008–16.

    Article  CAS  PubMed  Google Scholar 

  • Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278(23):4544–76.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Evolution of three-finger toxins – a versatile mini protein scaffold. Acta Chim Slov. 2011;58:693–701.

    CAS  PubMed  Google Scholar 

  • Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 1989;27(6):613–35.

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Picolo G, Gutierrez VP, Brigatte P, Zambelli VO, Camargo AC, Cury Y. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides. 2008;29(8):1293–304.

    Article  CAS  PubMed  Google Scholar 

  • Kukhtina VV, Weise C, Muranova TA, Starkov VG, Franke P, Hucho F, Wnendt S, Gillen C, Tsetlin VI, Utkin YN. Muscarinic toxin-like proteins from cobra venom. Eur J Biochem. 2000;267:6784–9.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Morrison S, Gulati A. Effect of ETA receptor antagonists on cardiovascular responses induced by centrally administered sarafotoxin 6b: role of sympathetic nervous system. Peptides. 1997;18(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Chen MJ, Lei DQ, Yang B, Liao GS, Shu YY, Tang SX. Bioactivities of nerve growth factor from Chinese cobra venom. J Nat Toxins. 1999;8(3):359–62.

    CAS  PubMed  Google Scholar 

  • Liang YX, Jiang WJ, Han LP, Zhao SJ. Peripheral and spinal antihyperalgesic activity of najanalgesin isolated from Naja naja atra in a rat experimental model of neuropathic pain. Neurosci Lett. 2009;460(3):191–5.

    Article  CAS  PubMed  Google Scholar 

  • Machado FC, Zambelli VO, Fernandes AC, Heimann AS, Cury Y, Picolo G. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine. Br J Pharmacol. 2014;171(4):961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maïga A, Mourier G, Quinton L, Rouget C, Gales C, Denis C, Lluel P, Sénard JM, Palea S, Servent D, Gilles N. G protein-coupled receptors, an unexploited animal toxin targets: exploration of green mamba venom for novel drug candidates active against adrenoceptors. Toxicon. 2012;59(4):487–96.

    Article  PubMed  Google Scholar 

  • Mancin AC, Soares AM, Andriao-Escarso SH, Faca VM, Greene LJ, Zuccolotto S, Pela IR, Giglio JR. The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon. 1998;36(12):1927–37.

    Article  CAS  PubMed  Google Scholar 

  • McKelvey L, Shorten GD, O’Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem. 2013;124(3):276–89.

    Article  CAS  PubMed  Google Scholar 

  • Mollay C, Wechselberger C, Mignogna G, Negri L, Melchiorri P, Barra D, Kreil G. Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur J Pharmacol. 1999;374(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  • Mordvintsev DY, Polyak YL, Rodionov DI, Jakubik J, Dolezal V, Karlsson E, Tsetlin VI, Utkin YN. Weak toxin WTX from Naja kaouthia cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors. FEBS J. 2009;276(18):5065–75.

    Article  CAS  PubMed  Google Scholar 

  • Nery AA, Trujillo CA, Lameu C, Konno K, Oliveira V, Camargo AC, Ulrich H, Hayashi MA. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors. Peptides. 2008;29(10):1708–15.

    Article  CAS  PubMed  Google Scholar 

  • Ogay AY, Rzhevsky DI, Murashev AN, Tsetlin VI, Utkin YN. Weak neurotoxin from Naja kaouthia cobra venom affects haemodynamic regulation by acting on acetylcholine receptors. Toxicon. 2005;45(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  • Osipov A, Utkin Y. Effects of snake venom polypeptides on central nervous system. Cent Nerv Syst Agents Med Chem. 2012;12(4):315–28.

    Article  CAS  PubMed  Google Scholar 

  • Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem. 2012;287(9):6725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu XC, Wong PT, Gopalakrishnakone P. A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah). Toxicon. 1995;33(11):1425–31.

    Article  CAS  PubMed  Google Scholar 

  • Pung YF, Wong PT, Kumar PP, Hodgson WC, Kini RM. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem. 2005;280(13):13137–47.

    Article  CAS  PubMed  Google Scholar 

  • Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon. 2007;50(7):871–92.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan N, Pung YF, Zhu YZ, Wong PT, Kumar PP, Kini RM. Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007;21(13):3685–95.

    Article  CAS  PubMed  Google Scholar 

  • Ranaei-Siadat SO, Riazi GH, Sadeghi M, Chang LS, Lin SR, Eghtesadi-Araghi P, Hakimelahi GH, Moosavi-Movahedi AA. Modification of substrate inhibition of synaptosomal acetylcholinesterase by cardiotoxins. J Biochem Mol Biol. 2004;37(3):330–8.

    CAS  PubMed  Google Scholar 

  • Richards DA, Morrone LA, Bagetta G, Bowery NG. Effects of alpha-dendrotoxin and dendrotoxin K on extracellular excitatory amino acids and on electroencephalograph spectral power in the hippocampus of anaesthetised rats. Neurosci Lett. 2000;293(3):183–6.

    Article  CAS  PubMed  Google Scholar 

  • Saviola AJ, Chiszar D, Busch C, Mackessy SP. Molecular basis for prey relocation in viperid snakes. BMC Biol. 2013;11:20. doi:10.1186/1741-7007-11-20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt JJ, Weinstein SA. Structure-function studies of waglerin I, a lethal peptide from the venom of Wagler’s pit viper, Trimeresurus wagleri. Toxicon. 1995;33(8):1043–9.

    Article  CAS  PubMed  Google Scholar 

  • Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunski M. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A. 1994;91(3):878–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servent D, Fruchart-Gaillard C. Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem. 2009;109(5):1193–202.

    Article  CAS  PubMed  Google Scholar 

  • Sunagar K, Fry BG, Jackson TN, Casewell NR, Undheim EA, Vidal N, Ali SA, King GF, Vasudevan K, Vasconcelos V, Antunes A. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenal. PLoS One. 2013;8(11):e81827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Yamazaki Y, Brown RL, Fujimoto Z, Morita T, Mizuno H. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain. Acta Crystallogr D Biol Crystallogr. 2008;64(Pt 10):1034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trummal K, Tõnismägi K, Paalme V, Järvekülg L, Siigur J, Siigur E. Molecular diversity of snake venom nerve growth factors. Toxicon. 2011;58(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Kukhtina VV, Kryukova EV, Chiodini F, Bertrand D, Methfessel C, Tsetlin VI. “Weak toxin” from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors. J Biol Chem. 2001;276(19):15810–5.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Weise C, Kasheverov IE, Andreeva TV, Kryukova EV, Zhmak MN, Starkov VG, Hoang NA, Bertrand D, Ramerstorfer J, Sieghart W, Thompson AJ, Lummis SC, Tsetlin VI. Azemiopsin from Azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor. J Biol Chem. 2012;287(32):27079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vulfius CA, Gorbacheva EV, Starkov VG, Osipov AV, Kasheverov IE, Andreeva TV, Astashev ME, Tsetlin VI, Utkin YN. An unusual phospholipase A2 from puff adder Bitis arietans venom–a novel blocker of nicotinic acetylcholine receptors. Toxicon. 2011;57(5):787–93.

    Article  CAS  PubMed  Google Scholar 

  • Wijeyewickrema LC, Gardiner EE, Gladigau EL, Berndt MC, Andrews RK. Nerve growth factor inhibits metalloproteinase-disintegrins and blocks ectodomain shedding of platelet glycoprotein VI. J Biol Chem. 2010;285(16):11793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Brown RL, Morita T. Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels. Biochemistry. 2002;41(38):11331–7.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda O, Morimoto S, Chen Y, Jiang B, Kimura T, Sakakibara S, Koh E, Fukuo K, Kitano S, Ogihara T. Calciseptine binding to a 1,4-dihydropyridine recognition site of the L-type calcium channel of rat synaptosomal membranes. Biochem Biophys Res Commun. 1993;194(2):587–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Osipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Osipov, A.V., Utkin, Y.N. (2017). Snake Venom Toxins Targeted at the Nervous System. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_23

Download citation

Publish with us

Policies and ethics