Skip to main content

Snake Venom Protease Inhibitors: Enhanced Identification, Expanding Biological Function, and Promising Future

  • Reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

Homeostasis of the body’s biochemical reactions is maintained by the balance of specific proteases and their counterparts, protease inhibitors. Snake venom protease inhibitors disrupt this balance and are thereby utilized by snakes as weapons to prey on other animals. Snake venom protease inhibitors primarily disrupt blood coagulation and blood pressure regulation. The resulting blood loss, blood clotting, or hypotension leads to immobilization or death of the prey.

This review describes the protease inhibitors that are thought to be distributed among many snake species, Kunitz-type protease inhibitors, bradykinin-potentiating peptides, and cystatins. In addition, as many components of snake venoms have diverse functions, the protease inhibitors that share motifs other than the protease inhibitory domains, i.e., phospholipase A2-like proteins and three-finger toxins, are described. The majority of these toxins function as enzymes and neurotoxins, respectively. Finally, recent studies including genome, transcriptome, and proteome analyses have identified protease inhibitor-like proteins as new components of snake venoms; however, none of these have yet been proven to exhibit protease inhibitory activities. In this regard, waprin and Kazal-type protease inhibitor-like proteins will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akif M, Masuyer G, Bingham RJ, Sturrock ED, Isaac RE, Acharya KR. Structural basis of peptide recognition by the angiotensin-1 converting enzyme homologue AnCE from Drosophila melanogaster. Febs J. 2012;279(24):4525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, et al. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem. 2008;283(35):23914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee Y, Mizuguchi J, Iwanaga S, Kini RM. Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem. 2005;280(52):42601–11.

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ. The cystatins – a new class of peptidase inhibitors. Trends Biochem Sci. 1987;12(5):193–6.

    Article  CAS  Google Scholar 

  • Berndt KD, Guntert P, Wuthrich K. Nuclear-magnetic-resonance solution structure of Dendrotoxin-K from the venom of dendroaspis-polylepis-polylepis. J Mol Biol. 1993;234(3):735–50.

    Article  CAS  PubMed  Google Scholar 

  • Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, et al. A heteromeric texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 2011;479(7373):410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahma RK, McCleary RJR, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon Off J Int Soc Toxinol. 2015;93:1–10.

    Article  CAS  Google Scholar 

  • Brillard-Bourdet M, Nguyen V, Ferrer-Di Martino M, Gauthier F, Moreau T. Purification and characterization of a new cystatin inhibitor from Taiwan cobra (Naja naja atra) venom. Biochem J. 1998;331:239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai WY, Naimuddin M, Inagaki H, Kameyama K, Ishida N, Kubo T. Directed evolution of three-finger toxin to produce serine protease inhibitors. J Recept Signal Transduct. 2014;34(3):154–61.

    Article  CAS  Google Scholar 

  • Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res. 2007;6(1):326–36.

    Article  CAS  PubMed  Google Scholar 

  • Camargo AC, Ianzer D, Guerreiro JR, Serrano SM. Bradykinin-potentiating peptides: beyond captopril. Toxicon. 2012;59(4):516–23.

    Article  CAS  PubMed  Google Scholar 

  • Campos ITN, Tanaka-Azevedo AM, Tanaka AS. Identification and characterization of a novel factor XIIa inhibitor in the hematophagous insect, Triatoma infestans (Hemiptera: Reduviidae). Febs Lett. 2004;577(3):512–6.

    Article  CAS  PubMed  Google Scholar 

  • Chang LS, Chung C, Huang HB, Lin SR. Purification and characterization of a chymotrypsin inhibitor from the venom of Ophiophagus hannah (King Cobra). Biochem Biophys Res Commun. 2001;283(4):862–7.

    Article  CAS  PubMed  Google Scholar 

  • Chang LS, Wang JJ, Cheng YC, Chou WM. Genetic organization of Bungarus multicinctus protease inhibitor-like proteins. Toxicon. 2008;51(8):1490–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZG, Bode W. Refined 2.5 a X-Ray crystal-structure of the complex formed by porcine Kallikrein-a and the bovine pancreatic trypsin-inhibitor – crystallization, patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin pancreatic trypsin-inhibitor complex. J Mol Biol. 1983;164(2):283–311.

    Article  CAS  PubMed  Google Scholar 

  • Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272(12):8090–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hsu CH, Su NY, Lin YC, Chiou SH, Wu SH. Solution structure of a Kunitz-type chymotrypsin inhibitor isolated from the elapid snake Bungarus fasciatus. J Biol Chem. 2001;276(48):45079–87.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Hu YT, Yang WS, He YW, Feng J, Wang B, et al. Hg1, Novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J Biol Chem. 2012;287(17):13813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A-C, Tsai I-H. Functional characterization of a slow and tight-binding inhibitor of plasmin isolated from Russell’s viper venom. Biochim Biophys Acta. 2014;1840(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  • Cheng A-C, Wu H-L, Shi G-Y, Tsai I-H. A novel heparin-dependent inhibitor of activated protein C that potentiates consumptive coagulopathy in Russell’s viper envenomation. J Biol Chem. 2012;287(19):15739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou WM, Liu WH, Chen KC, Chang LS. Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells. Toxicon. 2010;55(2–3):353–60.

    Article  CAS  PubMed  Google Scholar 

  • Cushman DW, Ondetti MA. Design of angiotensin converting enzyme inhibitors. Nat Med. 1999;5(10):1110–2.

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Steigemann W. Crystallographic refinement of structure of bovine pancreatic trypsin-inhibitor at 1.5 a resolution. Acta Crystallogr B. 1975;31(Jan15):238–50.

    Google Scholar 

  • Drenth J, Low BW, Richardson JS, Wright CS. The toxin-agglutinin fold. A new group of small protein structures organized around a four-disulfide core. J Biol Chem. 1980;255(7):2652–5.

    CAS  PubMed  Google Scholar 

  • Durban J, Juarez P, Angulo Y, Lomonte B, Flores-Diaz M, Alape-Giron A, et al. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics. 2011;23:12.

    Google Scholar 

  • Earl STH, Masci PP, de Jersey J, Lavin MF, Dixon J. Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch (Q8009) and CoVase(V0801). Toxicon. 2011;59(4):456–63.

    Article  CAS  Google Scholar 

  • Earl ST, Richards R, Johnson LA, Flight S, Anderson S, Liao A, et al. Identification and characterisation of Kunitz-type plasma kallikrein inhibitors unique to Oxyuranus sp. snake venoms. Biochimie. 2012;94(2):365–73.

    Article  CAS  PubMed  Google Scholar 

  • Evans HJ, Barrett AJ. A cystatin-like cysteine proteinase-inhibitor from venom of the African Puff Adder (Bitis-Arietans). Biochem J. 1987;246(3):795–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcao CB, de La Torre BG, Perez-Peinado C, Barron AE, Andreu D, Radis-Baptista G. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids. 2014;46(11):2561–71.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SH. A Bradykinin-Potentiating Factor (Bpf) present in venom of Bothrops jararaca. Br J Pharmacol Chemother. 1965;24(1):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SH, Bartelt DC, Greene LJ. Isolation of bradykinin-potentiating peptides from Bothrops-Jararaca venom. Biochem-Us. 1970;9(13):2583–93.

    Article  CAS  Google Scholar 

  • Fink E, Rehm H, Gippner C, Bode W, Eulitz M, Machleidt W, et al. The primary structure of Bdellin B-3 from the Leech Hirudo-Medicinalis – Bdellin B-3 Is a compact proteinase-inhibitor of a nonclassical Kazal type – it is present in the Leech in a high molecular mass form. Biol Chem H-S. 1986;367(12):1235–42.

    CAS  Google Scholar 

  • Gavras H, Brunner HR, Laragh JH, Gavras I, Vukovich RA. Use of angiotensin-converting enzyme-inhibitor in diagnosis and treatment of hypertension. Clin Sci Mol Med. 1975;48:S57–60.

    Google Scholar 

  • Grzesiak A, Krokoszynska I, Krowarsch D, Buczek O, Dadlez M, Otlewski J. Inhibition of six serine proteinases of the human coagulation system by mutants of bovine pancreatic trypsin inhibitor. J Biol Chem. 2000;275(43):33346–52.

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro JR, Lameu C, Oliveira EF, Klitzke CF, Melo RL, Linares E, et al. Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem. 2009;284(30):20022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CT, McClean S, Shaw C, Rao PF, Ye MY, Bjourson AJ. Purification, characterization and molecular cloning of chymotrypsin inhibitor peptides from the venom of Burmese Daboia russelii siamensis. Peptides. 2013a;43:126–32.

    Article  CAS  PubMed  Google Scholar 

  • Guo CT, McClean S, Shaw C, Rao PF, Ye MY, Bjourson AJ. Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon. 2013b;63:154–64.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL. Twenty years of dendrotoxins. Toxicon. 2001;39(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Rowan EG, Vatanpour H, Engstrom A, Westerlund B, Karlsson E. Changes to biological activity following acetylation of dendrotoxin I from Dendroaspis polylepis (black mamba). Toxicon Off J Int Soc Toxinol. 1997;35(8):1263–73.

    Article  CAS  Google Scholar 

  • Hayashi MAF, Camargo ACM. The Bradykinin-potentiating peptides from venom gland and brain of Bothrops jararaca contain highly site specific inhibitors of the somatic angiotensin-converting enzyme. Toxicon Off J Int Soc Toxinol. 2005;45(8):1163–70.

    Article  CAS  Google Scholar 

  • He YY, Liu SB, Lee WH, Qian JQ, Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides. 2008;29(10):1692–9.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, Camargo ACM, et al. Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. Immunopharmacology. 1999;44(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, da Silva NJ, et al. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus. Comp Biochem Physiol C. 2006;144(2):107–21.

    Google Scholar 

  • Hokama Y, Iwanaga S, Tatsuki T, Suzuki T. Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them. J Biochem. 1976;79(3):559–78.

    CAS  PubMed  Google Scholar 

  • Huber R, Kukla D, Ruhlmann A, Epp O, Formanek H. The basic trypsin inhibitor of Bovine Pancreas.1. Structure analysis and conformation of polypeptide chain. Naturwissenschaften. 1970;57(8):389–92.

    Article  CAS  PubMed  Google Scholar 

  • Imredy JP, MacKinnon R. Energetic and structural interactions between delta-dendrotoxin and a voltage-gated potassium channel. J Mol Biol. 2000;296(5):1283–94.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki H, Kimoto H, Yamauchi Y, Toriba M, Kubo T. Functional characterization of Kunitz-type protease inhibitor Pr-mulgins identified from new Guinean Pseudechis australis. Toxicon. 2012;59(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  • Jackson TN, Sunagar K, Undheim EA, Koludarov I, Chan AH, Sanders K, et al. Venom down under: dynamic evolution of Australian elapid snake toxins. Toxins (Basel). 2013;5(12):2621–55.

    Article  CAS  Google Scholar 

  • Joubert FJ, Strydom DJ. Snake venoms. The amino-acid sequence of trypsin inhibitor E of Dendroaspis polylepis polylepis (Black Mamba) venom. Eur J Biochem. 1978;87(1):191–8.

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Suzuki T. Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffi. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry-Us. 1971;10(6):972–80.

    Article  CAS  Google Scholar 

  • Kazal LA, Spicer DS, Brahinsky RA. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc. 1948;70(9):3034–40.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45(8):1147–61.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006;397:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855–67.

    Article  CAS  PubMed  Google Scholar 

  • Kordis D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol. 2009;9:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunitz M, Northrop JH. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J Gen Physiol. 1936;19(6):991–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong PD, Mcdonald NQ, Sigle PB, Hendrickson WA. Structure of Beta(2)-Bungarotoxin – potassium channel binding by Kunitz modules and targeted phospholipase action. Structure. 1995;3(10):1109–19.

    Article  CAS  PubMed  Google Scholar 

  • Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626.

    Article  CAS  PubMed  Google Scholar 

  • Laustsen AH, Lomonte B, Lohse B, Fernandez J, Gutierrez JM. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J Proteomics. 2015;119:126–42.

    Article  CAS  PubMed  Google Scholar 

  • Lenarcic B, Ritonja A, Strukelj B, Turk B, Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem. 1997;272(21):13899–903.

    CAS  PubMed  Google Scholar 

  • Lin YJ, Ikeya T, Guntert P, Chang LS. NMR Solution structure of a chymotrypsin inhibitor from the Taiwan Cobra Naja naja atra. Molecules. 2013;18(8):8906–18.

    Article  CAS  PubMed  Google Scholar 

  • Liu CS, Wu TC, Lo TB. Complete amino-acid-sequences of 2 protease inhibitors in the venom of Bungarus fasciatus. Int J Pept Protein Res. 1983;21(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  • Lomonte B, Pla D, Sasa M, Tsai W-C, Solorzano A, Urena-Diaz JM, et al. Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: snake venomics, toxicity, and neutralization by antivenom. J Proteomics. 2014;103:137–52.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Yang H, Yu H, Gao W, Lai R, Liu J, et al. A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides. 2008;29(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  • Masci PP, Whitaker AN, Sparrow LG, de Jersey J, Winzor DJ, Watters DJ, et al. Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul Fibrinolysis. 2000;11(4):385–93.

    Article  CAS  PubMed  Google Scholar 

  • Mashiko H, Takahashi H. Cysteine proteinase inhibitors in elapid and hydrophiid snake venoms. Toxicon. 2002;40(9):1275–81.

    Article  CAS  PubMed  Google Scholar 

  • Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep. 2012;2:717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millers EK, Trabi M, Masci PP, Lavin MF, de Jersey J, Guddat LW. Crystal structure of textilinin-1, a Kunitz-type serine protease inhibitor from the venom of the Australian common brown snake (Pseudonaja textilis). FEBS J. 2009;276(11):3163–75.

    Article  CAS  PubMed  Google Scholar 

  • Morais KLP, Hayashi MAF, Bruni FM, Lopes-Ferreira M, Camargo ACM, Ulrich H, et al. Bj-PRO-5a, a natural angiotensin-converting enzyme inhibitor, promotes vasodilatation mediated by both bradykinin B2 and M1 muscarinic acetylcholine receptors. Biochem Pharmacol. 2011;81(6):736–42.

    Article  CAS  PubMed  Google Scholar 

  • Morjen M, Kallech-ziri O, Bazaa A, Othman H, Mabrouk K, Zouari-kessentini R, et al. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol. 2013;32(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  • Murayama N, Hayashi MAF, Ohi H, Ferreira LAF, Hermann VV, Saito H, et al. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A. 1997;94(4):1189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natesh R, Schwager SL, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003;421(6922):551–4.

    Article  CAS  PubMed  Google Scholar 

  • Nery AA, Trujillo CA, Lameu C, Konno K, Oliveira V, Camargo ACM, et al. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors. Peptides. 2008;29(10):1708–15.

    Article  CAS  PubMed  Google Scholar 

  • Osipov AV, Filkin SY, Makarova YV, Tsetlin VI, Utkin YN. A new type of thrombin inhibitor, noncytotoxic phospholipase A(2), from the Naja haje cobra venom. Toxicon. 2010;55(2–3):186–94.

    Article  CAS  PubMed  Google Scholar 

  • Owen DG, Hall A, Stephens G, Stow J, Robertson B. The relative potencies of dendrotoxins as blockers of the cloned voltage-gated K+ channel, mKv1.1 (MK-1), when stably expressed in Chinese hamster ovary cells. Br J Pharmacol. 1997;120(6):1029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perales J, Neves-Ferreira AG, Valente RH, Domont GB. Natural inhibitors of snake venom hemorrhagic metalloproteinases. Toxicon. 2005;45(8):1013–20.

    Article  CAS  PubMed  Google Scholar 

  • Possani LD, Martin BM, Yatani A, Mochca-Morales J, Zamudio FZ, Gurrola GB, et al. Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon. 1992;30(11):1343–64.

    Article  CAS  PubMed  Google Scholar 

  • Richards R, St Pierre L, Trabi M, Johnson LA, de Jersey J, Masci PP, et al. Cloning and characterisation of novel cystatins from elapid snake venom glands. Biochimie. 2011;93(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  • Rimphanitchayakit V, Tassanakajon A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev Comp Immunol. 2010;34(4):377–86.

    Article  CAS  PubMed  Google Scholar 

  • Ritonja A, Meloun B, Gubensek F. The primary structure of Vipera ammodytes venom trypsin inhibitor-I. Biochim Biophys Acta. 1983a;748(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  • Ritonja A, Turk V, Gubensek F. Serine Proteinase-Inhibitors from Vipera ammodytes venom – isolation and Kinetic-Studies. Eur J Biochem. 1983b;133(2):427–32.

    Article  CAS  PubMed  Google Scholar 

  • Ritonja A, Evans HJ, Machleidt W, Barrett AJ. Amino-acid-sequence of a cystatin from venom of the African Puff Adder (Bitis arietans). Biochem J. 1987;246(3):799–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau A, Michaud A, Chauvet MT, Lenfant M, Corvol P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995;270(8):3656–61.

    Article  CAS  PubMed  Google Scholar 

  • Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer’s amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities. Protein Sci. 1997;6(9):1806–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunski M. Calcicludine, a venom peptide of the Kunitz-Type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high-affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A. 1994;91(3):878–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitz H, Bruhn T, Guillemare E, Moinier D, Lancelin JM, Beress L, et al. Kalicludines and Kaliseptine – 2 different classes of Sea-Anemone toxins for Voltage-Sensitive K+ channels. J Biol Chem. 1995;270(42):25121–6.

    Article  CAS  PubMed  Google Scholar 

  • Shafqat J, Beg OU, Yin SJ, Zaidi ZH, Jornvall H. Primary structure and functional-properties of cobra (Naja-Naja-Naja) venom Kunitz-type trypsin-inhibitor. Eur J Biochem. 1990;194(2):337–41.

    Article  CAS  PubMed  Google Scholar 

  • Silva MRE, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol. 1949;156(2):261–73.

    Google Scholar 

  • Simpson KJ, Ranganathan S, Fisher JA, Janssens PA, Shaw DC, Nicholas KR. The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J Biol Chem. 2000;275(30):23074–81.

    Article  CAS  PubMed  Google Scholar 

  • Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta-Mol Cell Biol L. 2000;1488(1–2):1–19.

    Article  CAS  Google Scholar 

  • Skarzynski T. Crystal-structure of alpha-dendrotoxin from the green mamba venom and its comparison with the structure of bovine pancreatic trypsin-inhibitor. J Mol Biol. 1992;224(3):671–83.

    Article  CAS  PubMed  Google Scholar 

  • Smith VJ. Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates. Biochem Soc Trans. 2011;39:1403–8.

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Reid PF, Wang FC, Parcej DN, Schmidt JJ, Olson MA, et al. Site-directed mutagenesis of dendrotoxin K reveals amino acids critical for its interaction with neuronal K+ channels. Biochem-Us. 1997;36(25):7690–6.

    Article  CAS  Google Scholar 

  • Soares MR, Oliveira-Carvalho AL, Wermelinger LS, Zingali RB, Ho PL, Junqueira-de-Azevedo IDM, et al. Identification of novel bradykinin-potentiating peptides and C-type natriuretic peptide from Lachesis muta venom. Toxicon. 2005;46(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  • Takahash H, Iwanaga S, Hokama Y, Suzuki T, Kitagawa T. Primary structure of proteinase-inhibitor Ii isolated from venom of Russells Viper (Vipera russelli). Febs Lett. 1974;38(2):217–21.

    Article  Google Scholar 

  • Takahashi H, Iwanaga S, Suzuki T. Isolation of a novel inhibitor of kallikrein, plasmin and trypsin from the venom of Russell’s viper (Vipera russelli). Febs Lett. 1972;27(2):207–10.

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Wong HY, Desai M, Moochhala S, Kuchel PW, Kini RM. Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from Naja nigricollis snake venom. J Biol Chem. 2003;278(41):40097–104.

    Article  CAS  PubMed  Google Scholar 

  • Tsetlin V, Utkin Y, Kasheverov I. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol. 2009;78(7):720–31.

    Article  CAS  PubMed  Google Scholar 

  • Tsunemi M, Matsuura Y, Sakakibara S, Katsube Y. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution. Biochem-Us. 1996;35(36):11570–6.

    Article  CAS  Google Scholar 

  • Tytgat J, Vandenberghe I, Ulens C, Van Beeumen J. New polypeptide components purified from mamba venom. Febs Lett. 2001;491(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Weise C, Kasheverov IE, Andreeva TV, Kryukova EV, Zhmak MN, et al. Azemiopsin from azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor. J Biol Chem. 2012;287(32):27079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand WE, Schmaier AH, Siegel RS, Wagner SL, Raschke WC. Enhanced plasmin inhibition by a reactive center lysine mutant of the Kunitz-type protease inhibitor domain of the amyloid beta-protein precursor. J Biol Chem. 1995;270(39):22827–30.

    Article  PubMed  Google Scholar 

  • Wang FC, Bell N, Reid P, Smith LA, McIntosh P, Robertson B, et al. Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2 alpha subunits. Eur J Biochem/FEBS. 1999;263(1):222–9.

    Article  CAS  Google Scholar 

  • Wei AZ, Alexander RS, Duke J, Ross H, Rosenfeld SA, Chang CH. Unexpected binding mode of tick anticoagulant peptide complexed to bovine factor Xa. J Mol Biol. 1998;283(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  • Wiedow O, Schroder JM, Gregory H, Young JA, Christophers E. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem. 1990;265(25):14791–5.

    CAS  PubMed  Google Scholar 

  • Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. Plos One. 2008;3(10), e3414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X-D, Jin Y, Lu Q-M, Li D-S, Zhu S-W, Wang W-Y, et al. Purification, characterization and primary structure of a chymotrypsin inhibitor from Naja atra venom. Comp Biochem Physiol B Biochem Mol Biol. 2004;137(2):219–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Inagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Inagaki, H. (2017). Snake Venom Protease Inhibitors: Enhanced Identification, Expanding Biological Function, and Promising Future. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_16

Download citation

Publish with us

Policies and ethics