Skip to main content

Upwelling

  • Reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Geologists have five good reasons for an interest in upwelling currents, which are highly productive and tend to be recorded for posterity through organic enrichment on continental margins. Firstly, massive accumulations of organic-rich sediment eventually form the source rocks for oil. Secondly, these accumulations may contain abundant remains of siliceous organisms like diatoms, providing commercially significant deposits of diatomite. Thirdly, the migration of phosphorus from organic-rich sediments into pore fluids or bottom waters may lead to the formation of phosphorite deposits important to the fertilizer industry. Fourthly, these organic rocks together or separately form part of the signature triad of organic-rich black shale, diatomite, and phosphorite that can be used in paleoclimatology as indicators of particular climate conditions including past upwelling (Parrish, 1982; Parrish and Curtis, 1982). And, finally, these rocks provide important clues to the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adkins, J., de Menocal, P., and Eshel, G., 2006. The “African humid period” and the record of marine upwelling from excess 230Th in ocean drilling program hole 658C. Paleoceanography, 21, PA4203, doi:10.1029/2005PA001200.

    Article  Google Scholar 

  • Adkins, J., de Menocal, P. B., and Eshel, G., 2007. Correction to The “African humid period” and the record of marine upwelling from excess 230Th in ocean drilling program hole 658C. Paleoceanography, 22, PA1206, doi:10.1029/2006PA001388.

    Article  Google Scholar 

  • Anand, P., Kroon, D., Singh, A. D., Ganeshram, R. S., Ganssen, G., and Elderfield, H., 2008. Coupled sea surface temperature-seawater ∂18O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography, 23, PA4207, doi:10.1029/2007PA001564.

    Article  Google Scholar 

  • Anderson, R. F., 2003. Chemical tracers of particle transport. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Oxford: Elsevier-Pergamon. Treatise on Geochemistry, Vol. 6, pp. 247–291.

    Google Scholar 

  • Archer, D., 2003. Biological fluxes in the ocean and atmospheric pCO2. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Oxford: Elsevier-Pergamon. Treatise on Geochemistry, Vol. 6, pp. 275–291.

    Google Scholar 

  • Barron, E. J., 1986. Mathematical climate models: insights into the relationship between climate and economic sedimentary deposits. In Parrish, J. T., and Barron, E. J. (eds.), Paleoclimates and Economic Geology. Tulsa: Society of Economic Paleontologists and Mineralogists. Lecture Notes for Short Course, Vol. 18, pp. 31–83.

    Chapter  Google Scholar 

  • Baturin, G. H., 2000. Formation and evolution of phosphorite grains and nodules on the Namibian Shelf, from recent to Pleistocene. In Glenn, C. R., Prevot-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: From Global to Microbial. Tulsa: Society of Economic Paleontologists and Mineralogists. SEPM Special Publication, Vol. 66, pp. 185–199.

    Chapter  Google Scholar 

  • Baturin, G. H., Merkulova, K. I., and Chalov, P. I., 1972. Radiometric evidence for recent formation of phosphatic nodules in marine shelf sediments. Marine Geology, 13, M37–M41.

    Article  Google Scholar 

  • Berger, W. H., Smetacek, V. S., and Wefer, G. (eds.), 1989a. Productivity of the Ocean: Present and Past. Dahlem Konferenzen. Chichester: Wiley. 470pp.

    Google Scholar 

  • Berger, W. H., Smetacek, V. S., and Wefer, G., 1989b. Ocean productivity – an overview. In Berger, W. H., Smetacek, V. S., and Wefer, G. (eds.), Productivity of the Ocean: Present and Past. Dahlem Konferenzen. Chichester: Wiley, pp. 1–34.

    Google Scholar 

  • Berger, W. H., Lange, C. B., and Wefer, G., 2002. Upwelling history of the Benguela-Namibia system: a synthesis of Leg 1775 results. In Wefer, G., Berger, W. H., and Richter, C. (eds.), Proceedings of ODP, Science Results, 175 (Online). Available from World Wide Web: http://www-odp.tamu.edu/publications/175_SR/synth/synth.htm

  • Bralower, T. J., and Thierstein, H. R., 1984. Low-productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, 12, 614–618.

    Article  Google Scholar 

  • Bremner, J. M., 1983. Biogenic sediments of the South West African (Namibian) continental margin. In Thiede, J., and Suess, E. (eds.), Coastal Upwelling, Its Sediment Record. New York: Plenum, Vol. 2, pp. 73–103.

    Chapter  Google Scholar 

  • Budziak, D., Schneider, R., Rostek, F., Müller, P. J., Bard, E., and Wefer, G., 2000. Late Quaternary insolation forcing on total organic carbon and 37C alkenone variations in the Arabian Sea. Paleoceanography, 15(3), 307–321.

    Article  Google Scholar 

  • Burnett, W. C., 1977. Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geological Society of America Bulletin, 88, 813–823.

    Article  Google Scholar 

  • Burnett, W. C., and Riggs, S. R. (eds.), 1990. Phosphate Deposits of the World, v3., Neogene to Modern Phosphorites. Cambridge: Cambridge University Press.

    Google Scholar 

  • Burnett, W. C., Veeh, H. H., and Soutar, A., 1980. U-Series, oceanographic and sedimentary evidence in support of recent formation of phosphate nodules off Peru. In Bentor, Y. K. (ed.), Marine Phosphorites. Tulsa: Society of Economics Paleontologists and Mineralogists. SEPM Special Publication, Vol. 29, pp. 61–71.

    Chapter  Google Scholar 

  • Calvert, S. E., 1987. Oceanographic controls on the accumulation of organic matter in marine sediments. In Brooks, J., and Fleet, A. J. (eds.), Marine Petroleum Source Rocks. Oxford: Blackwell. Geological Society of London, Special Publication, Vol. 26, pp. 137–151.

    Google Scholar 

  • Caulet, J. P., Vénec-Peyré, M. T., Vergnaud-Grazzini, C., and Nigrini, C., 1992. Variation of South Somalian upwelling during the last 160 ka: radiolarian and foraminifera records in core MD 85674. In Summerhayes, C. P., Prell, W. L., and Emeis, K. C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64, pp. 379–389.

    Google Scholar 

  • Cook, P. J., and McElhinny, M. W., 1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology, 24(2), 315–330.

    Article  Google Scholar 

  • de Abreu, L., Abrantes, F., Shackleton, N. J., Tzedakis, P. C., McManus, J. F., Oppo, D. W., and Hall, M. A., 2005. Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: a partial analogue to the Holocene? Paleoceanography, 20, PA3009, doi:10.1029/2004PA001091.

    Article  Google Scholar 

  • Dean, W. E., Hay, W. W., and Sibuet, J. C., 1984. Geologic evolution, sedimentation, and paleoenvironments of the Angola Basin and Adjacent Walvis ridge: synthesis of results of Deep Sea Drilling Project Leg 75. In Hay, W. W., Sibuet, J. C., et al. (eds.), Initial Reports of the DSDP 75. Washington, DC: U.S. Govt. Printing Office, pp. 509–544.

    Google Scholar 

  • Dean, W. E., Zheng, Y., Ortiz, J. D., and van Geen, A., 2006. Sediment Cd and Mo accumulation in the oxygen-minimum zone off western Baja California linked to global climate over the past 52 kyr. Paleoceanography, 21, PA4209, doi:10.1029/2005PA001239.

    Article  Google Scholar 

  • Dekens, P. S., Ravelo, A. C., and McCarthy, M. D., 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography, 22, PA3211, doi:10.1029/2006PA001394.

    Article  Google Scholar 

  • Dezileau, L., Ulloa, O., Hebbeln, D., Lamy, F., Reyss, J.-L., and Fontugne, M., 2004. Iron control of past productivity in the coastal upwelling system off the Atacama Desert, Chile. Paleoceanography, 19, PA3012, doi:10.1029/2004PA001006.

    Article  Google Scholar 

  • Diester-Haass, L., Meyers, P. A., and Rothe, P., 1992. The Benguela current and associated upwelling on the southwest African margin: a synthesis of the Neogene-Quaternary sedimentary record at DSDP sites 362 and 532. In Summerhayes, C. P., Prell, W. L., and Emeis, K. C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64, pp. 331–342.

    Google Scholar 

  • Diester-Haass, L., Meyers, P. A., and Bickert, T., 2004. Carbonate crash and biogenic bloom in the late Miocene: evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography, 19, PA1007, doi:10.1029/2003PA000933.

    Article  Google Scholar 

  • Diffenbaugh, N. S., Sloan, L. C., and Snyder, M. A., 2003. Orbital suppression of wind-driven upwelling in the California Current at 6 ka. Paleoceanography, 18(2), 1051, doi:10.1029/2002PA000865.

    Article  Google Scholar 

  • Eglinton, T. I., and Repeta, D. J., 2003. Organic matter in the contemporary ocean. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Oxford: Elsevier-Pergamon. Treatise on Geochemistry, Vol. 6, pp. 145–180.

    Google Scholar 

  • Emery, K. O., 1960. The Sea off Southern California: A Modern Habitat of Petroleum. New York: Wiley. 366 pp.

    Google Scholar 

  • Emmer, E., and Thunell, R. C., 2000. Nitrogen isotope variations in Santa Barbara Basin sediments: implications for denitrification in the eastern tropical North Pacific during the last 50,000 years. Paleoceanography, 15(4), 377–387.

    Article  Google Scholar 

  • Feldberg, M. J., and Mix, A. C., 2003. Planktonic foraminifera, sea surface temperatures, and mechanisms of oceanic change in the Peru and south equatorial currents, 0–150 ka BP. Paleoceanography, 18(1), 1016, doi:10.1029/2001PA000740.

    Article  Google Scholar 

  • Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe Damsté, J. S., 2007. Tropical warming and intermittent cooling during the Cenomanian/Turonian Oceanic Anoxic Event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22, PA1219, doi:10.1029/2006PA001349.

    Article  Google Scholar 

  • Frakes, L. A., Francis, J. E., and Sytkus, J. I., 1992. Climate Modes of the Phanerozoic – The History of the Earth’s Climate Over the Past 600 Million Years. Cambridge: Cambridge University Press. 274 pp.

    Google Scholar 

  • Gersonde, R., Crosta, X., Abelmann, A., and Armand, L., 2005. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum – a circum-Antarctic view based on siliceous microfossil records. Quaternary Science Reviews, 24, 869–896.

    Article  Google Scholar 

  • Giraud, X., and Paul, A., 2010. Interpretation of the paleo-primary production record in the NW African coastal upwelling system as potentially biased by sea level change. Paleoceanography, 25, PA4224, doi:10.1029/2009PA001795.

    Article  Google Scholar 

  • Hanson, C. E., Pattiaratchi, C., and Waite, A. M., 2005. Sporadic upwelling on a downwelling coast: phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Continental Shelf Research, 25(12–13), 1561–1582.

    Article  Google Scholar 

  • Haslett, S. K., and Smart, C. W., 2006. Late Quaternary upwelling off tropical NW Africa: new micropalaeontological evidence from ODP Hole 658C. Journal of Quaternary Science, 21, 259–269.

    Article  Google Scholar 

  • Heinrich, S., Zonneveld, K. A. F., Bickert, T., and Willems, H., 2011. The Benguela upwelling related to the Miocene cooling events and the development of the Antarctic Circumpolar Current: evidence from calcareous dinoflagellate cysts. Paleoceanography, 26, PA3209, doi:10.1029/2010PA002065.

    Article  Google Scholar 

  • Heinze, P.-M., and Wefer, G., 1992. The history of coastal upwelling off Peru (11°S, ODP Leg 112, Site 680B) over the past 650,000 years. In Summerhayes, C. P., Prell, W. L., and Emeis, K. C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64, pp. 451–462.

    Google Scholar 

  • Hendy, I. L., Pedersen, T. F., Kennett, J. P., and Tada, R., 2004. Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr. Paleoceanography, 19, PA3007, doi:10.1029/2003PA000965.

    Article  Google Scholar 

  • Herbert, T. D., 2003. Alkenone paleotemperature determinations. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Oxford: Elsevier-Pergamon. Treatise on Geochemistry, Vol. 6, pp. 391–432.

    Google Scholar 

  • Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P. C., Margari, V., Channell, J. E. T., Kamenov, G., Maclachlan, S., and Rothwell, G., 2013. Response of Iberian margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography, 28, 185–199, doi:10.1002/palo.20017.

    Article  Google Scholar 

  • Hofmann, P., and Wagner, T., 2011. ITCZ controls on late cretaceous black shale sedimentation in the tropical Atlantic Ocean. Paleoceanography, 26, PA4223, doi:10.1029/2011PA002154.

    Article  Google Scholar 

  • Jahnke, R. A., and Shimmield, G. B., 1995. Particle flux and its conversion to the sediment record: coastal ocean upwelling systems. In Summerhayes, C. P., Emeis, K. -C., Angel, M. V., Smith R. L., and Zeitschel, B., (eds.), Upwelling in the Ocean – Modern Processes and Ancient Records. Dahlem Workshop Reports, Environmental Sciences Report, 18. New York: Wiley, pp. 83–100.

    Google Scholar 

  • Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A., 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26, PA3201, doi:10.1029/2010PA002081.

    Article  Google Scholar 

  • Jenkyns, H. C., 2008. Oceanic Anoxic Events: 30 Years On. www.noc.soton.ac.uk/nocs/fridsemabs/Series_07-08/Hugh_Jenkyns_020508.pdf

  • Jenkyns, H. C., 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004, doi:10.1029/2009GC002788.

    Article  Google Scholar 

  • Kienast, S. S., Calvert, S. E., and Pedersen, T. F., 2002. Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography, 17(4), 1055, doi:10.1029/2001PA000650.

    Article  Google Scholar 

  • Kirst, G., Schneider, R. R., Muller, P. J., Von Storch, I., and Wefer, G., 1999. Late Quaternary temperature variability in the Benguela current system derived from alkenones. Quaternary Research, 52, 92–103.

    Article  Google Scholar 

  • Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S., 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17(4), 1051, doi:10.1029/2000PA000569.

    Article  Google Scholar 

  • Little, M. G., Schneider, R. R., Kroon, D., Price, N. B., Summerhayes, C. P., and Segl, M., 1997. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleoceanography, 12(4), 568–576.

    Article  Google Scholar 

  • Loubere, P., Fariduddin, M., and Murray, R. W., 2003. Patterns of export production in the eastern equatorial Pacific over the past 130,000 years. Paleoceanography, 18(2), 1028, doi:10.1029/2001PA000658.

    Article  Google Scholar 

  • McKelvey, V. E., 1963. Successful new techniques in prospecting for phosphate deposits. In US Department State, Natural Resources Contribution to UN Conference Application of Science and Technology for the Benefit of Less Developed Areas. Geneva, Vol. 2, pp. 164–172.

    Google Scholar 

  • Mohtadi, M., and Hebbeln, D., 2004. Mechanisms and variations of the paleoproductivity off northern Chile (24°S-33°S) during the last 40,000 years. Paleoceanography, 19, PA2023, doi:10.1029/2004PA001003.

    Article  Google Scholar 

  • Murray, J., and Chumley, J., 1924. The Deep Sea Deposits of the Atlantic Ocean. Edinburgh: Robert Grant & Son. Transactions of the Royal Society of Edinburgh, Vol. 54, part 1, pp. 1–252.

    Google Scholar 

  • Murray, J., and Renard, A. F., 1891. Deep-Sea Deposits. London: H.M.S.O.. Reports on the Scientific Results of the H.M.S. Challenger 1873–76.

    Google Scholar 

  • Palter, J. S., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, D., 2010. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences Discussions, 7, 4045–4088.

    Article  Google Scholar 

  • Parrish, J. T., 1982. Upwelling and petroleum source beds, with reference to the Palaeozoic. Bulletin of the American Association of Petroleum, 66, 750–754.

    Google Scholar 

  • Parrish, J. T., and Curtis, R. L., 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic. Palaeogeography Palaeoclimatology Palaeoecology, 40, 31–66.

    Article  Google Scholar 

  • Parrish, J. T., Ziegler, A. M., and Humphreville, R. G., 1983. Upwelling in the Paleozoic era. In Thiede, J., and Suess, E. (eds.), Coastal Upwelling – Its Sediment Record, Part B, Sedimentary Records of Ancient Coastal Upwelling. New York/London: Plenum. NATO Conference Series IV, Marine Sciences, pp. 553–578.

    Chapter  Google Scholar 

  • Pichevin, L., Martinez, P., Bertrand, P., Schneider, R., Giraudeau, J., and Emeis, K., 2005. Nitrogen cycling on the Namibian Shelf and slope over the last two climatic cycles: local and global forcings. Paleoceanography, 20, PA2006, doi:10.1029/2004PA001001.

    Article  Google Scholar 

  • Reimers, C. E., and Suess, E., 1983. Late Quaternary fluctuations in the cycling of organic matter off central Peru: a proto-kerogen record. In Thiede, J., and Suess, E. (eds.), Coastal Upwelling, Its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling. New York: Plenum, pp. 497–525.

    Chapter  Google Scholar 

  • Ruttenberg, K. C., 2005. The global phosphorus cycle. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Amsterdam: Elsevier. Treatise on Geochemistry, Vol. 6, pp. 585–643.

    Google Scholar 

  • Sarnthein, J. M., Winn, K., Duplessy, J.-C., and Fontugne, M., 1988. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, 3(4), 361–399.

    Article  Google Scholar 

  • Schlanger, S. O., and Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55, 179–184.

    Google Scholar 

  • Scotese, C. R., and Summerhayes, C. P., 1986. Computer model of paleoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte, 1(3), 28–44 and 94.

    Google Scholar 

  • Shimmield, G. B., 1992. Can sediment geochemistry record changes in coastal upwelling palaeoproductivity? Evidence from Northwest Africa and the Arabian Sea. In Summerhayes, C. P., Prell, W. L., and Emeis, K. C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64, pp. 29–46.

    Google Scholar 

  • Shimmield, G. B., and Jahnke, R. A., 1995. Particle flux and its conversion to the sediment record: open ocean upwelling systems. In Summerhayes, C. P., Emeis, K. C., Angel, M. V., Smith R. L., and Zeitschel, B. (eds.), Upwelling in the Ocean – Modern Processes and Ancient Records. Dahlem Workshop Reports, Environmental Sciences Report, 18. New York: Wiley, pp. 171–191.

    Google Scholar 

  • Siesser, W. G., 1980. Late Miocene origin of the Benguela upwelling system off northern Namibia. Science, 208, 283–285.

    Article  Google Scholar 

  • Sigman, D. M., and Haug, G. H., 2003. Biological pump in the past. In Elderfield, H., Holland, H. D., and Turekian, K. K. (eds.), The Oceans and Marine Geochemistry. Oxford: Elsevier-Pergamon. Treatise on Geochemistry, Vol. 6, pp. 491–528.

    Google Scholar 

  • Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and Kroon, D., 2011. Productivity collapses in the Arabian Sea during glacial cold phases. Paleoceanography, 26, PA3210, doi:10.1029/2009PA001923.

    Article  Google Scholar 

  • Stow, D. A. V., and Dean, W. E., 1984. Middle Cretaceous black sales at site 530 in the southeastern Angola Basin. In Hay, W. W., Sibuet, J.-C., et al. (eds.), Initial Reports of the DSDP, 75. Washington, DC: U.S. Govt. Printing Office, pp. 809–817.

    Google Scholar 

  • Suess, E., and Thiede, J. (eds.), 1983. Coastal Upwelling, Its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling. New York: Plenum. 604 pp.

    Google Scholar 

  • Summerhayes, C. P., 1981a. Oceanographic controls on organic matter in the Miocene Monterey Formation, Offshore California. In Garrison, R. E., and Douglas, R. G. (eds.), The Monterey Formation and Related Siliceous Rocks of California. Los Angeles: Society of Economic Paleontologists and Mineralogists, pp. 213–219.

    Google Scholar 

  • Summerhayes, C. P., 1981b. Organic facies of middle Cretaceous black shales in deep North Atlantic. Bulletin of the American Association of Petroleum, 65(11), 2364–2380.

    Google Scholar 

  • Summerhayes, C. P., 1983. Sedimentation of organic matter in upwelling regimes. In Thiede, J., and Suess, E. (eds.), Coastal Upwelling, Its Sediment Record, Part B: Sedimentary Records of Ancient Coastal Upwelling. New York: Plenum, pp. 29–72.

    Chapter  Google Scholar 

  • Summerhayes, C. P., 1987. Organic-rich Cretaceous sediments from the North Atlantic. In Brooks, J., and Fleet, A. J. (eds.), Marine Petroleum Source Rocks. Oxford: Blackwell. Geological Society of London, Special Publication, Vol. 26, pp. 301–316.

    Google Scholar 

  • Summerhayes, C. P., and McArthur, J. M., 1990. Moroccan offshore phosphate deposits. In Burnett, W. C., and Riggs, S. R. (eds.), Phosphate Deposits of the World. Cambridge: Cambridge University Press, Vol. 3, pp. 159–166.

    Google Scholar 

  • Summerhayes, C. P., Nutter, A. H., and Tooms, J. S., 1971. Geological structure and development of the continental margin of northwest Africa. Marine Geology, 11, 1–25.

    Article  Google Scholar 

  • Summerhayes, C. P., Prell, W. L., and Emeis, K.-C., 1992. Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64. 519 pp.

    Google Scholar 

  • Summerhayes, C. P., Emeis, K. -C., Angel, M. V., Smith R. L., and Zeitschel, B., (eds.), 1995a. Upwelling in the Ocean – Modern Processes and Ancient Records. Dahlem Workshop Reports, Environmental Sciences Report, 18. New York: Wiley, 418 pp.

    Google Scholar 

  • Summerhayes, C. P., Kroon, D., Rosell-Melé, A., Jordan, R. W., Schrader, H.-J., Hearn, R., Villanueva, J., Grimalt, J. O., and Eglinton, G., 1995b. Variability in the Benguela Current upwelling system over the past 70,000 years. Progress in Oceanography, 35, 207–251.

    Google Scholar 

  • Summerhayes, C. P., Emeis, K. -C., Angel, M. V., Smith R. L., and Zeitschel, B., 1995c. Upwelling in the ocean – modern processes and ancient records. In Summerhayes, C. P., Emeis, K-C., Angel, M. V., Smith, R. L., and Zeitschel, B. (eds.), Upwelling in the Ocean – Modern Processes and Ancient Records. Dahlem Workshop Reports, Environmental Sciences Report, 18. New York: Wiley, pp. 1–37.

    Google Scholar 

  • Tamburini, F., Föllmi, K. B., Adatte, T., Bernasconi, S. M., and Steinmann, P., 2003. Sedimentary phosphorus record from the Oman margin: new evidence of high productivity during glacial periods. Paleoceanography, 18(1), 1015, doi:10.1029/2000PA000616.

    Article  Google Scholar 

  • Thiede, J., and Suess, E. (eds.), 1983. Coastal Upwelling, Its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling. New York: Plenum. 610 pp.

    Google Scholar 

  • Thomson, J., Calvert, S. E., Mukherjee, S., Burnett, W. C., and Bremner, J. M., 1984. Further studies of the nature, composition and ages of contemporary phosphorite from the Namibian Shelf. Earth and Planetary Science Letters, 69, 341–353.

    Article  Google Scholar 

  • Thomson, J., Nixon, S., Summerhayes, C. P., Schonfeld, J., Zahn, R., and Grootes, P., 1999. Implications for sediment changes on the Iberian margin over the last two glacial/interglacial transitions from (230Th excess)o systematics. Earth and Planetary Science Letters, 165, 255–270.

    Article  Google Scholar 

  • Thomson, J., Nixon, S., Summerhayes, C. P., Rohling, E., Schonfeld, J., Zahn, R., Grootes, P., Abrantes, F., Gaspar, L., and Vaqueiro, S., 2000. Enhanced productivity on the Iberian margin during glacial/interglacial transitions revealed by barium and diatoms. Journal of the Geological Society of London, 157, 667–677.

    Article  Google Scholar 

  • Toggweiler, J. R., and Carson, S., 1995. What are upwelling systems contributing to the ocean’s carbon and nutrient budgets? In Summerhayes, C. P., Emeis, K. -C., Angel, M. V., Smith, R. L., and Zeitschel, B. (eds.), Upwelling in the Ocean – Modern Processes and Ancient Records. Dahlem Workshop Reports, Environmental Sciences Report, 18. New York: Wiley, pp. 337–360.

    Google Scholar 

  • Topper, R. P. M., Trabucho-Alexandre, J., Tuenter, E., and Meijer, P. T., 2011. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation. Climate of the Past, 7, 277–297.

    Article  Google Scholar 

  • Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J. R., van de Wal, S. W., Dijkstra, H. A., and de Boer, P. L., 2010. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography, 25, PA4201, doi:10.1029/2010PA001925.

    Article  Google Scholar 

  • Trabucho-Alexandre, J., Van Gilst, R. I., Rodriguez-Lopez, J. P., and De Boer, P. L., 2011. The sedimentary expression of oceanic anoxic event 1b in the North Atlantic. Sedimentology, 58, 1217–1246.

    Article  Google Scholar 

  • Vincent, E., and Berger, W. H., 1985. Carbon dioxide and polar cooling in the Miocene: the monterey hypothesis. In Sundquist, E. T., and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 32, pp. 455–468.

    Chapter  Google Scholar 

  • White, L. D., Garrison, R. E., and Barron, J. A., 1992. Miocene intensification of upwelling along the California margin as recorded in siliceous facies of the Monterey Formation and Offshore DSDP sites. In Summerhayes, C. P., Prell, W. L., and Emeis, K. C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. London: Geological Society. Geological Society of London, Special Publication, Vol. 64, pp. 429–442.

    Google Scholar 

  • Zhao, M., Beveridge, N. A. S., Shackleton, N. J., and Sarnthein, M., 1995. Molecular stratigraphy of cores off Northwest Africa: sea surface temperature history over the last 80 ka. Paleoceanography, 10, 661–675.

    Article  Google Scholar 

  • Zheng, Y., van Geen, A., and Anderson, R. F., 2000. Intensification of the northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period. Paleoceanography, 15(5), 528–536.

    Article  Google Scholar 

  • Ziegler, A. M., 1982. The University of Chicago Paleogeographic Atlas Project: Background – Current Status – Future Plans. Department of Geophysical Sciences, University of Chicago. Unpublished Ms. 19 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Summerhayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Summerhayes, C. (2016). Upwelling. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_96

Download citation

Publish with us

Policies and ethics