Skip to main content

Wadati-Benioff-Zone

  • Reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Inclined thin planar zone of seismicity down to depths of about 700 km resulting from processes related to the subduction of an oceanic plate including interaction of descending and overriding plate.

Introduction

About three quarters of all tectonic earthquakes, both along all types of plate boundaries and in various intraplate environments, initiate at shallow depth of less than about 60 km. Among them are the largest earthquakes with Mw larger than 9, which solely occur in the seismogenic zone, the shallow portion of the plate interface in subduction zones. The remaining quarter of tectonic earthquakes occurs in depths deeper than about 60 km and as deep as close to 700 km. These deep earthquakes are nearly exclusively identified along inclined narrow zones of intraplate seismicity within the downgoing oceanic plate in subduction zones, the so-called Wadati-Benioff zones (Figure 1).

Wadati-Benioff-Zone, Figure 1
figure 201 figure 201

Unscaled schematic sketch of the Wadati-Benioff zone...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abers, G. A., Nakajima, J., van Keken, P. E., Kita, S., and Hacker, B. R., 2013. Thermal-petrological controls on the location of earthquakes within subducting plates. EPSL, 369–370, 178–187, doi:101016/j.epsl.2013.03.022.

    Article  Google Scholar 

  • Barcheck, C. G., Wiens, D. A., van Keken, P. E., and Hacker, B. R., 2012. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs. EPSL, 349–350, 153–160, doi:10.1016/epsl2012.06.055.

    Article  Google Scholar 

  • Benioff, H., 1949. Seismic evidence for the fault origin of oceanic deeps. GSA Bulletin, 60, 1837–1866.

    Article  Google Scholar 

  • Brudzinski, M., Thurber, C. H., Hacker, B. R., and Engdahl, E. R., 2007. Global prevalence of double Benioff zones. Science, 316, 1472–1474.

    Article  Google Scholar 

  • Chen, Y., Wen, L., and Ji, C., 2014. A cascading failure during the 24 May 2013 great Okhotsk deep earthquake. Journal of Geophysical Research, 119, 3035–3049. doi:10.1002/2013JB010926

    Google Scholar 

  • Emmerson, B., and McKenzie, D., 2007. Thermal structure and seismicity of subducting lithosphere. Physics of the Earth and Planetary Interiors, 163, 191–208, doi:10.1016/j.pepi.2007.05.007.

    Article  Google Scholar 

  • Estabrook, C. H., 2004. Seismic constraints on mechanisms of deep earthquake rupture. Journal of Geophysical Research, 109, B02306, doi:10.1029/2003JB002449.

    Article  Google Scholar 

  • Frohlich, C., 2006. Deep earthquakes. Cambridge: Cambridge University Press, p. 573.

    Book  Google Scholar 

  • Fujita, K., and Kanamori, H., 1981. Double seismic zones and stresses of intermediate depth earthquakes. Geophysical Journal of the Royal Astronomical Society, 66, 131–156.

    Article  Google Scholar 

  • Garth, T., and Rietbrock, A., 2014. Order of magnitude increase in subducted H2O due to hydrated normal faults within the wadati-benioff zone. Geology, 42(3), 207–210, doi:10.1130/G34703.1.

    Article  Google Scholar 

  • Green, H. W., 2007. Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes. PNAS, 104, 9133–9138, doi:10.1073/pnas0608045104.

    Article  Google Scholar 

  • Hasegawa, A., Umino, N., and Horiuchi, S., 1978. Double-planed deep seismic zone and upper mantle structure in the northeastern Japan arc. Royal Astr Social Geophys Journal, 54, 281–296.

    Article  Google Scholar 

  • Heuret, A., and Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. PEPI, 149, 31–51.

    Google Scholar 

  • John, T., Medvedev, S., Rüpke, L. H., Andersen, T. B., Podladchikov, Y. Y., and Austrheim, A., 2009. Generation of intermediate-depth earthquakes by self-localization thermal runaway. Nature Geoscience, 2, 137–140.

    Article  Google Scholar 

  • Jung, H., Green, H. W., and Dobrzhinetskaya, L. F., 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428, 545–549.

    Article  Google Scholar 

  • Kanamori, H., Anderson, D. L., and Heaton, T. H., 1998. Frictional melting during the rupture of the 1994 Bolivian earthquake. Science, 279, 839–842.

    Article  Google Scholar 

  • Kawakatsu, H., 1986. Double seismic zones: kinematics. Journal of Geophysical Research, 91, 4811–4825.

    Article  Google Scholar 

  • Kelemen, P. B., and Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 446, 787–790.

    Article  Google Scholar 

  • Kikuchi, M., and Kanamori, H., 1994. The mechanism of the deep Bolivia earthquake of June 9, 1994. Geophysical Research Letters, 21, 2341–2344.

    Article  Google Scholar 

  • Kirby, S. H., Durham, W. B., and Stern, L. A., 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252, 216–225.

    Article  Google Scholar 

  • Kirby, S. H., Stein, S., Okal, E. A., and Rubie, D. C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34, 261–306.

    Article  Google Scholar 

  • Marot, M., Monfret, T., Pardo, M., Ranalli, G., and Nolet, G. 2013. A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca plate (32°), central Chile. Journal of Geophysical Research, 118, 3462–3475. doi:10.1002/jgrb.50240

    Google Scholar 

  • Meng, L., Ampuero, J.-P., and Bürgmann, R., 2014. The Okhotsk deep-focus earthquake: rupture beyond the metastable olivine wedge and thermally controlled rise time near the edge of a slab. Geophysical Research Letters, 41, 3779–3785, doi:10.1002/2014GL059968.

    Article  Google Scholar 

  • Peacock, S. M., 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle ? Geology, 29, 299–301.

    Article  Google Scholar 

  • Peacock, S. M., 2003. Thermal structure and metamorphic evolution of subducting slabs. inside the subduction factory. Geophysical Monograph, 138, 7–22.

    Google Scholar 

  • Prieto, G., Florez, M., Barrett, S. A., Beroza, G. C., Pedraza, P., Blanco, J. F., and Poveda, E., 2013. Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophysical Research Letters, 40, 6064–6068, doi:10.1002/2013GL058109.

    Article  Google Scholar 

  • Ranero, C. R., and Sallares, V., 2004. Geophysical evidence for hydration of the crust and mantle of the nazca plate during bending at the north Chile trench. Geology, 32, 549–552, doi:10.1130/G20379.1.

    Article  Google Scholar 

  • Ranero, C. R., Villaseñor, A., Phipps Morgan, J., and Weinrebe, W., 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6, Q12002. doi: 10.1029/2005GC000997.

    Google Scholar 

  • Rayleigh, C. B., and Paterson, M. S., 1965. Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70, 3965–3985.

    Article  Google Scholar 

  • Reynard, B., Nakajima, J., and Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double wadati-benioff zones. Geophysical Research Letters, 37, L24309, doi:10.1029/2010GL045494.

    Article  Google Scholar 

  • Rietbrock, A., and Waldhauser, F. 2004. A narrowly spaced double-seismic zone in the subducting Nazca plate. Geophysical Research Letters, 31, L10608, doi:10.1029/2004GL019610.

    Google Scholar 

  • Seno, T., and Yamamaka, Y., 1996. Double seismic zones, compressional deep trench-outer rise events, and superplumes. In: Bebout GE (Ed.), subduction: Top to bottom. Monograph, 96, 347–355.

    Google Scholar 

  • Shiina, T., Nakajima, J., and Matsuzawa, T., 2013. Seismic evidence for high pore pressures in the oceanic crust: implications for fluid-related embrittlement. Geophysical Research Letters, 40, 05–28, doi:10.1002/grl.50468.

    Article  Google Scholar 

  • Tibi, R., Bock, G., and Wiens, D. A., 2003. Source characteristics of large deep earthquakes: constraints on the faulting mechanisms at great depths. Journal of Geophysical Research, 108, B22091, doi:10.1029/2002JB001948.

    Article  Google Scholar 

  • van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research, 116, B01401. doi:10.1029/2010JB007922

    Google Scholar 

  • Wadati, K., 1928. On shallow and deep earthquakes. Geophysical Magazine, 1, 162–202.

    Google Scholar 

  • Wadati, K., 1931. Shallow and deep earthquakes, 3rd paper. Geophysical Magazine, 4, 231–283.

    Google Scholar 

  • Wadati, K., 1935. On the activity of deep-focus earthquakes in the Japan islands and neighboorhoods. Geophysical Magazine, 8, 305–326.

    Google Scholar 

  • Wang, K., 2002. Unbending combined with dehydration embrittlement as a cause for double and triple seismic zones. Geophysical Research Letters, 29, 1889. doi:10.1029/2002GL015441

    Google Scholar 

  • Warren, L. M., Hughes, A. N., and Silver, P. G., (2007). Earthquake mechanics and deformation in the tonga-Kermadec subduction zone from fault plane orientations of intermediate- and deep-focus earthquakes. Journal of Geophysical Research, 112, B05314. doi:10.1029/2006JB004677

    Google Scholar 

  • Wiens, D. A., and McGuire, J., 1995. The 1994 Bolivia and Tonga events: fundamentally different types of deep earthquakes? Geophysical Research Letters, 22, 2245–2248.

    Article  Google Scholar 

  • Ye, L., Lay, T., Hanamori, H., and Koper, K. D., 2013. Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science, 341, 1380–1384.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kukowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kukowski, N. (2016). Wadati-Benioff-Zone. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_108

Download citation

Publish with us

Policies and ethics