Skip to main content

Spider Silk

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Silks of Spiders as model Bio-polymers

Definitions

Silks are animal fibers (or more rarely ribbons or sheets) of proteinageous biomaterials that are, by definition, extrusion spun [1]. While the evolutionary origins and taxonomic placement of silk feedstocks can differ widely across the arthropods, filaments can be surprisingly similar [2]. Capture silks are sticky materials depolying either nanoscale filaments or aqueous glycoprotein glues that have evolved from dry silks [3].

Outline

Silks are fascinating biological products and have evolved several times independently in the arthropods. Spiders and moths are the best-known and best-studied of silk spinners, but there are others ranging from mites to bees [2]. In each taxon the diversity of silks has evolved in only one ancestor but then radiated quickly (over millions of years) into many different types fit for the various purposes required by the animal – be it integration into a cocoon composite or use as a single safety...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vollrath, F., Porter, D.: Silks as ancient models for modern polymers. Polymer 50, 5623–5632 (2009)

    Article  Google Scholar 

  2. Sutherland, T.D., Young, J., Weisman, S., Hayashi, C.Y., Merrit, D.: Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188 (2010)

    Article  Google Scholar 

  3. Brunetta, L., Craig, C.: Spider Silk: Evolution and 400 Million Years of Spinning, Waiting, Snagging, and Mating, pp. 1–229. Yale University Press, New Haven/London (2010)

    Google Scholar 

  4. Vollrath, F.: Spider webs and silks. Sci. Am. 266(3), 46–52 (1992)

    Article  Google Scholar 

  5. Fu, C., Shao, Z., Vollrath, F.: Animal silks: their structures, properties and artificial production. Chem. Commun. 43, 6515–6529 (2009)

    Article  Google Scholar 

  6. Omenetto, F., Kaplan, D.L.: New opportunities for an ancient material. Science 329, 528–531 (2010)

    Article  Google Scholar 

  7. Porter, D., Vollrath, F.: Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21, 487–492 (2009)

    Article  Google Scholar 

  8. Harmer, A.M.T., Blackledge, T.A., Madin, J.S., Herberstein, M.E.: High-performance spider webs: integrating biomechanics, ecology and behaviour. J. R. Soc. Interface 8, 457–471 (2011)

    Article  Google Scholar 

  9. Vollrath, F., Porter, D., Dicko, C.: The structure of silk. In: Eichhorn, S.J., Hearlem, J.W.S., Jaffe, M., Kikutani, T. (eds.) Handbook of Textile Fibre Structure, vol. 2, pp. 146–198. Woodhead Publishing, Oxford/Cambridge, MA/New Delhi (2009)

    Chapter  Google Scholar 

  10. Vollrath, F., Knight, D.P.: Liquid crystal silk spinning in nature. Nature 410, 541–548 (2001)

    Article  Google Scholar 

  11. Aldo Leal-Egaña, A., Scheibel, T.: Silk-based materials for biomedical applications. Biotechnol. Appl. Biochem. 55, 155–167 (2010)

    Article  Google Scholar 

  12. Dicko, C., Porter, D., Vollrath, F.: Silk: relevance to amyloids. In: Riggaci, S., Bucciantini, M. (eds.) Functional Amyloid Aggregation, pp. 51–70. Research SignPost, Trivandrum (2010)

    Google Scholar 

  13. Porter, D., Vollrath, F.: The role of kinetics of water and amide bonding in protein stability. Soft. Matter. 4, 328–336 (2008)

    Article  Google Scholar 

  14. Holland, C., Vollrath, F.: Biomimetic principles of spider silk for high-performance fibres. Chapter 7. In: Ellison, M.S., Abbott, A.G. (eds.) Biologically Inspired Textiles. Woodhead Publishing, Cambridge, MA (2008)

    Google Scholar 

  15. Liu, Y., Sponner, A., Porter, D., Vollrath, F.: Proline and processing of spider silks. Biomacromolecules 9, 116–121 (2008)

    Article  Google Scholar 

  16. Porter, D.: Group Interaction Modelling of Polymers. Marcel Dekker, New York (1995)

    Google Scholar 

  17. Holland, C., Terry, E.A., Porter, D., Vollrath, F.: Rheological characterisation of native spider and silkworm dope. Nat. Mater. 5, 870–874 (2006)

    Article  Google Scholar 

  18. Spiess, K., Lammel, A., Scheibel, T.: Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 10, 998–1007 (2010)

    Article  Google Scholar 

  19. Holland, C., Vollrath, F., Ryan, A.J., Mykhaylyk, O.O.: Silk and synthetic polymers; reconciling 100 degrees of separation. Adv. Mater. 24, 105–109 (2012)

    Article  Google Scholar 

  20. Porter, D., Vollrath, F.: Water mediated proton hopping empowers proteins. Soft. Matter. 9, 643–646 (2013)

    Article  Google Scholar 

  21. Porter, D., Vollrath, F.: Water mobility, denaturation and the glass transition in proteins. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1824, 785–791 (2012)

    Article  Google Scholar 

  22. Vollrath, F., Porter, D.: Spider silk as archetypal protein elastomer. Soft. Matter. 2(5), 377–385 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Vollrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vollrath, F. (2015). Spider Silk. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_269-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_269-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics