Skip to main content

Dissipative Particle Dynamics, Overview

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Coarse-grained molecular dynamics; Fluctuating hydrodynamics; Mesoscopic simulation; Rheology; Soft matter

Definition

Dissipative particle dynamics (DPD) is a stochastic mesoscopic simulation technique that describes clusters of molecules moving together in a Lagrangian fashion subject to simplified pairwise conservative, dissipative and random forces.

Introduction

Natural systems can be described at different scales based on both spatial and temporal size. In general, there are three different scales, i.e., micro-, meso-, and macroscales. A microscopic event occurs at nanometers in length and nanoseconds in time or, even less, governed by quantum mechanics or classical laws. Macroscale describes physical objects or phenomena that are measurable and visible directly with the naked eye, and thus, the mean free path of molecules is far smaller than the characteristic length of the geometry. A macroscopic event is usually described by continuum partial differential equations...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)

    Article  Google Scholar 

  2. Español, P., Warren, P.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196 (1995)

    Article  Google Scholar 

  3. Español, P.: Dissipative particle dynamics with energy conservation. Europhys. Lett. 40, 631–636 (1997)

    Article  Google Scholar 

  4. Español, P.: Fluid particle model. Phys. Rev. E 57, 2930–2948 (1998)

    Article  Google Scholar 

  5. Warren, P.B.: Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E 68, 066702 (2003)

    Article  Google Scholar 

  6. Español, P., Revenga, M.: Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705 (2003)

    Article  Google Scholar 

  7. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)

    Article  Google Scholar 

  8. Pivkin, I.V., Caswell, B., Karniadakis, G.E.: Dissipative particle dynamics. In: Lipkowitz, K.B. (ed.) Reviews in Computational Chemistry, pp. 85–110. Wiley, New Jersey (2010)

    Chapter  Google Scholar 

  9. Groot, R.D.: Applications of dissipative particle dynamics. Lect. Notes Phys. 640, 5–38 (2004)

    Article  Google Scholar 

  10. Lu, Z.-Y., Wang, Y.-M.: An introduction to dissipative particle dynamics. In: Monticelli, L., Salonen, E. (eds.) Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology, pp. 617–633. Springer, New York (2013)

    Chapter  Google Scholar 

  11. Kong, Y., Manke, C.W., Madden, W.G., Schlijper, A.G.: Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. J. Chem. Phys. 107, 592–602 (1997)

    Article  Google Scholar 

  12. Fan, X.J., Phan-Thien, N., Ng, T.Y., Wu, X.H., Xu, D.: Microchannel flow of a macromolecular suspension. Phys. Fluids 15, 11–21 (2003)

    Article  Google Scholar 

  13. Fan, X.J., Phan-Thien, N., Chen, S., Wu, X.H., Ng, T.Y.: Simulating flow of DNA suspension using dissipative particle dynamics. Phys. Fluids 18, 063102 (2006)

    Article  Google Scholar 

  14. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, London (1986)

    Google Scholar 

  15. Groot, R.D., Madden, T.J.: Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 108, 8713–8724 (1998)

    Article  Google Scholar 

  16. Yamamoto, S., Maruyama, Y., Hyodo, S.: Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J. Chem. Phys. 116, 5842–5849 (2002)

    Article  Google Scholar 

  17. Huang, J.-H., Ma, Z.-X., Luo, M.-B.: Self-assembly of rod-coil diblock copolymers within a rod-selective slit: A dissipative particle dynamics simulation study. Langmuir 30, 6267–6273 (2014)

    Article  Google Scholar 

  18. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: Dissipative particle dynamics modeling of red blood cells. In: Pozrikidis, C. (ed.) Computational Hydrodynamics of Capsules and Biological Cells, pp. 183–218. CRC Press, Boca Raton (2010)

    Chapter  Google Scholar 

  19. Li, J., Dao, M., Lim, C.T., Suresh, S.: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88, 3707–3719 (2005)

    Article  Google Scholar 

  20. Fedosov, D.A., Pivkin, I.V., Pan, W.X., Dao, M., Caswell, B., Karniadakis, G.E.: Multiscale modeling of hematologic disorders. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds.) Modelling of Physiological Flows, pp. 289–331. Springer, New York (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Li, X. et al. (2015). Dissipative Particle Dynamics, Overview. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100954-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100954-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics