Skip to main content

Biped Footstep Planning

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Planning footsteps before the actual walking motion is a way to ignore the dynamic complexity of bipedal walking in the motion planning process without losing the possibility to exploit the essential characteristic of walking: the fact that it relies on isolated contacts with the ground and therefore provides the ability to traverse irregular or discontinuous terrain. The duality between a continuous environment and discrete sequences of contacts confers to footstep planning a hybrid nature and an interesting theoretical aspect, which adds up to its obvious practical interest. Well incorporated and efficient footstep planning abilities would give humanoid robots a navigation autonomy allowing them to perform a great number of versatile tasks in unstructured environments. Many approaches have been considered to obtain efficient footstep planning, for example, using only a finite number of predefined steps or bounding boxes for fast collision checking. And for really reactive footstep planning, dynamics have to be put back into the equation, either by merging footstep planning with gait control or by adaptively switching between different layers of planning. In this chapter, we give an overview of the main techniques that have been proposed and tested over the past 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Arechavaleta, J.-P. Laumond, H. Hicheur, A. Berthoz, The nonholonomic nature of human locomotion: a modeling study, in IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 158–163

    Google Scholar 

  2. O. Arslan, U. Saranli, O. Morgul, Reactive footstep planning for a planar spring mass hopper, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 160–166

    Google Scholar 

  3. Y. Ayaz, K. Munawar, M.B. Malik, A. Konno, M. Uchiyama, Human-like approach to footstep planning among obstacles for humanoid robots. Int. J. Humanoid Rob. 4(01), 125–149 (2007)

    Article  Google Scholar 

  4. J.-D. Boissonnat, O. Devillers, S. Lazard, Motion planning of legged robots. SIAM J. Comput. 30(1), 218–246 (2000)

    Article  MathSciNet  Google Scholar 

  5. J.M. Bourgeot, N. Cislo, B. Espiau, Path-planning and tracking in a 3D complex environment for an anthropomorphic biped robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2509–2514

    Google Scholar 

  6. S. Candido, Y.-T. Kim, S. Hutchinson, An improved hierarchical motion planner for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2008, pp. 654–661

    Google Scholar 

  7. J. Chestnutt, J.J. Kuffner, A tiered planning strategy for biped navigation, in IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 422–436

    Google Scholar 

  8. J. Chestnutt, J.J. Kuffner, K. Nishiwaki, S. Kagami, Planning biped navigation strategies in complex environments, in IEEE/RAS International Conference on Humanoid Robots, 2003

    Google Scholar 

  9. J. Chestnutt, M. Lau, G. Cheung, J.J. Kuffner, J. Hodgins, T. Kanade, Footstep planning for the Honda ASIMO humanoid, in IEEE International Conference on Robotics and Automation, 2005, pp. 629–634

    Google Scholar 

  10. J. Chestnutt, K. Nishiwaki, J.J. Kuffner, S. Kagami, An adaptive action model for legged navigation planning, in IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 196–202

    Google Scholar 

  11. J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J.J. Kuffner, S. Kagami, Biped navigation in rough environments using on-board sensing, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3543–3548

    Google Scholar 

  12. S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taïx, J.-P. Laumond, Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach. Int. J. Humanoid Rob. 32(9-10), 1089–1103 (2013)

    Article  Google Scholar 

  13. R. Deits, R. Tedrake, Footstep planning on uneven terrain with mixed-integer convex optimization. in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 279–286

    Google Scholar 

  14. A. El Khoury, M. Taïx, F. Lamiraux, Path optimization for humanoid walk planning: an efficient approach, in International Conference on Informatics in Control, Automation and Robotics, 2011, pp. 179–184

    Google Scholar 

  15. J. Garimort, A. Hornung, Humanoid navigation with dynamic footstep plans, in IEEE International Conference on Robotics and Automation, 2011, pp. 3982–3987

    Google Scholar 

  16. J.S. Gutmann, M. Fukuchi, M. Fujita, A modular architecture for humanoid robot navigation, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 26–31

    Google Scholar 

  17. K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Rob. Res. 27(11-12), 1325–1349 (2008)

    Article  Google Scholar 

  18. A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic footstep placement. Adv. Rob. 24(5-6), 719–737 (2010)

    Article  Google Scholar 

  19. Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, J.-H. Kim, Evolutionary multiobjective footstep planning for humanoid robots. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(4), 520–532 (2011)

    Google Scholar 

  20. A. Hornung, M. Bennewitz, Adaptive level-of-detail planning for efficient humanoid navigation, in IEEE International Conference on Robotics and Automation, 2012, pp. 997–1002

    Google Scholar 

  21. A. Hornung, A. Dornbush, M. Likhachev, M. Bennewitz, Anytime search-based footstep planning with suboptimality bounds, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 674–679

    Google Scholar 

  22. A. Hornung, K.M. Wurm, M. Bennewitz, Humanoid robot localization in complex indoor environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 1690–1695

    Google Scholar 

  23. A. Ibanez, P. Bidaud, V. Padois, Emergence of humanoid walking behaviors from mixed-integer model predictive control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4014–4021

    Google Scholar 

  24. S. Kagami, K. Nishiwaki, J.J. Kuffner, K. Okada, M. Inaba, H. Inoue, Vision-based 2.5D terrain modeling for humanoid locomotion, in IEEE International Conference on Robotics and Automation, 2003, pp. 2141–2146

    Google Scholar 

  25. O. Kanoun, J.-P. Laumond, E. Yoshida, Planning foot placements for a humanoid robot: a problem of inverse kinematics. Int. J. Rob. Res. 30(4), 476–485 (2011)

    Google Scholar 

  26. S. Koenig, M. Likhachev, D* lite, in National Conference on Artificial Intelligence and Conference on Innovative Applications of Artificial Intelligence, 2002, pp. 476–483

    Google Scholar 

  27. J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)

    Google Scholar 

  28. J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Footstep planning among obstacles for biped robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 500–505

    Google Scholar 

  29. S. LaValle, J.J. Kuffner, Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  30. T.-Y. Li, P.-F. Chen, P.-Z. Huang, Motion planning for humanoid walking in a layered environment, in IEEE International Conference on Robotics and Automation, 2003, pp. 3421–3427

    Google Scholar 

  31. M. Likhachev, G.J. Gordon, S. Thrun, ARA*: anytime A* with provable bounds on sub-optimality, in Advances in Neural Information Processing Systems (MIT Press, Cambridge, 2003)

    Google Scholar 

  32. M. Likhachev, A. Stentz, R* search, in AAAI Conference on Artificial Intelligence, 2008, pp. 344–350

    Google Scholar 

  33. H. Liu, Q. Sun, T. Zhang, Hierarchical RRT for humanoid robot footstep planning with multiple constraints in complex environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3187–3194

    Google Scholar 

  34. D. Maier, A. Hornung, M. Bennewitz, Real-time navigation in 3D environments based on depth camera data, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 692–697

    Google Scholar 

  35. D. Maier, C. Lutz, M. Bennewitz, Integrated perception, mapping, and footstep planning for humanoid navigation among 3D obstacles, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 2658–2664

    Google Scholar 

  36. P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J.J. Kuffner, T. Kanade, GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 463–469

    Google Scholar 

  37. P. Michel, J. Chestnutt, J.J. Kuffner, T. Kanade, Vision-guided humanoid footstep planning for dynamic environments, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 13–18

    Google Scholar 

  38. I. Mordatch, M. De Lasa, A. Hertzmann, Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29(4), 71 (2010)

    Article  Google Scholar 

  39. K. Nishiwaki, J. Chestnutt, S. Kagami, Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int. J. Rob. Res. 31(11), 1251–1262 (2012)

    Article  Google Scholar 

  40. K. Okada, M. Inaba, H. Inoue, Integration of real-time binocular stereo vision and whole body information for dynamic walking navigation of humanoid robot, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2003, pp. 131–136

    Google Scholar 

  41. K. Okada, T. Ogura, A. Haneda, M. Inaba, Autonomous 3D walking system for a humanoid robot based on visual step recognition and 3D foot step planner, in IEEE International Conference on Robotics and Automation, 2005, pp. 623–628

    Google Scholar 

  42. N. Perrin, From discrete to continuous motion planning, in Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, Berlin, Springer Berlin Heidelberg, vol. 86, 2013, pp. 89–104

    Google Scholar 

  43. N. Perrin, O. Stasse, F. Lamiraux, E. Yoshida, Weakly collision-free paths for continuous humanoid footstep planning, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4408–4413

    Google Scholar 

  44. N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, E. Yoshida, Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Rob. 28(2), 427–439 (2012)

    Article  Google Scholar 

  45. N. Perrin, O. Stasse, F. Lamiraux, Y.J. Kim, D. Manocha, Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box, in IEEE International Conference on Robotics and Automation, 2012, pp. 977–982

    Google Scholar 

  46. A. Sherikov, D. Dimitrov, P.-B. Wieber, Whole body motion controller with long-term balance constraints, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 444–450

    Google Scholar 

  47. A. Wu, H. Geyer, The 3-D spring–mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Rob. 29(5), 1114–1124 (2013)

    Article  Google Scholar 

  48. Z. Xia, G. Chen, J. Xiong, Q. Zhao, K. Chen, A random sampling-based approach to goal-directed footstep planning for humanoid robots, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 168–173

    Google Scholar 

  49. E. Yoshida, I. Belousov, C. Esteves, J.-P. Laumond, Humanoid motion planning for dynamic tasks, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 1–6

    Google Scholar 

  50. M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J.A. Bagnell, C.G. Atkeson, J.J. Kuffner, Optimization and learning for rough terrain legged locomotion. Int. J. Rob. Res. 30(2), 175–191 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perrin, N. (2019). Biped Footstep Planning. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_29

Download citation

Publish with us

Policies and ethics