Skip to main content

Cell-Based Assays for Neurotoxins

  • Reference work entry
  • First Online:
Biological Toxins and Bioterrorism

Part of the book series: Toxinology ((TOXI))

Abstract

The implementation of cell-based assays in basic research, disease modeling, and drug discovery has dramatically increased over the past 10 years. One field which has suffered from the lack of physiologically relevant cell-based models that are compatible with moderate-throughput applications is neurotoxicology. The development of next-generation stem cell-derived neurons for neurotoxicology research has the potential to resolve this limitation; however, derived neurons have to be demonstrated to exhibit the same physiological responses as primary neuron populations. In particular, derived neurons must demonstrate appropriate electrical behaviors, transsynaptic signaling, and network activity to be considered relevant models. This chapter reviews the state of the art in cell-based assays (CBAs) predicated on the use of stem cell-derived neurons, describes the different pluripotent populations that are currently used, discusses advantages and limitations of differentiation methods, and reviews some initial applications. Finally, developing techniques are presented that are anticipated to increase throughput, sensitivity, and relevance. While the transition to moderate-throughput assays is still under way, it is clear that stem cell-derived neurons offer a potent combination of physiological relevance with scalability and genetic tractability, and therefore, CBAs based on derived neurons are poised to revolutionize neurotoxicology research and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34(4–5):325–37.

    CAS  PubMed  Google Scholar 

  • Bai X, Twaroski D, Bosnjak ZJ. Modeling anesthetic developmental neurotoxicity using human stem cells. Semin Cardiothorac Vasc Anesth. 2013;17:276–87.

    PubMed  Google Scholar 

  • Bain G, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168(2):342–57.

    CAS  PubMed  Google Scholar 

  • Bibel M, et al. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc. 2007;2(5):1034–43.

    CAS  PubMed  Google Scholar 

  • Bitz S. The botulinum neurotoxin LD50 test – problems and solutions. ALTEX. 2010;27(2):114–6.

    PubMed  Google Scholar 

  • Bonfoco E, et al. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose R, et al. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci. 2012;130(2):383–90.

    CAS  PubMed  Google Scholar 

  • Bosnjak ZJ. Developmental neurotoxicity screening using human embryonic stem cells. Exp Neurol. 2012;237(1):207–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branch DW, et al. Microstamp patterns of biomolecules for high-resolution neuronal networks. Med Biol Eng Comput. 1998;36(1):135–41.

    CAS  PubMed  Google Scholar 

  • Buzanska L, et al. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells. 2009;27(10):2591–601.

    CAS  PubMed  Google Scholar 

  • Cashman CR, Lazzerini Ospri L. Induced pluripotent stem cells and motor neuron disease: toward an era of individualized medicine. J Neurosci. 2013;33(20):8587–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30(7):715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzi C, et al. Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells. Exp Neurol. 2009;217(2):407–16.

    CAS  PubMed  Google Scholar 

  • Chen T, et al. Protective effect of C(60) -methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J Appl Toxicol. 2011;31(3):255–61.

    PubMed  Google Scholar 

  • Chen Q, et al. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron. 2012;76(2):297–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipman PH, Zhang Y, Rafuse VF. A stem-cell based bioassay to critically assess the pathology of dysfunctional neuromuscular junctions. PLoS One. 2014;9(3):e91643.

    PubMed  PubMed Central  Google Scholar 

  • Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc. 2008;3(12):1888–94.

    CAS  PubMed  Google Scholar 

  • Choi YS, et al. Neurotoxicity screening in a multipotent neural stem cell line established from the mouse brain. J Korean Med Sci. 2010;25(3):440–8.

    PubMed  PubMed Central  Google Scholar 

  • Chung S, et al. ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc Natl Acad Sci U S A. 2011;108(23):9703–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85.

    PubMed  Google Scholar 

  • Dingemans MM, et al. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells. Toxicol Sci. 2009;107(2):490–7.

    CAS  PubMed  Google Scholar 

  • Drury-Stewart D, et al. Small molecule promoted feeder free and adherent differentiation of functional neurons from human embryonic and induced pluripotent stem cells. J Stem Cells. 2011;6(1):1–7.

    PubMed  Google Scholar 

  • Duchen LW, Gomez S, Queiroz LS. The neuromuscular junction of the mouse after black widow spider venom. J Physiol. 1981;316:279–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eubanks LM, et al. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci U S A. 2007;104(8):2602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Salas E, et al. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS One. 2012;7(11):e49516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foran PG, et al. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 2003;278(2):1363–71.

    CAS  PubMed  Google Scholar 

  • Gomez S, Queiroz LS. The effects of black widow spider venom on the innervation of muscles paralysed by botulinum toxin. Q J Exp Physiol. 1982;67(3):495–506.

    CAS  PubMed  Google Scholar 

  • Goulburn AL, et al. Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res. 2012;8(3):416–26.

    CAS  PubMed  Google Scholar 

  • Gupta K, Hardingham GE, Chandran S. NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci Lett. 2013;543:95–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gut IM, et al. Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury. PLoS One. 2013;8(5):e64423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hester ME, et al. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol Ther. 2011;19(10):1905–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higurashi N, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hires SA, Zhu Y, Tsien RY. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A. 2008;105(11):4411–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hrusovsky K. Efficient R&D process can position a drug candidate for commercial success. DDNews. Rocky River: Old River Publications LLC; 2010.

    Google Scholar 

  • Hu BY, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard KS, et al. High yield derivation of enriched glutamatergic neurons from suspension-cultured mouse ESCs for neurotoxicology research. BMC Neurosci. 2012;13:127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes MA, et al. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues. J Biomed Mater Res A. 2014:102(5):1350–1360.

    PubMed  Google Scholar 

  • Ikegaya Y, Le Bon-Jego M, Yuste R. Large-scale imaging of cortical network activity with calcium indicators. Neurosci Res. 2005;52(2):132–8.

    CAS  PubMed  Google Scholar 

  • Ishida K, et al. Involvement of decreased glutamate receptor subunit GluR2 expression in lead-induced neuronal cell death. J Toxicol Sci. 2013;38(3):513–21.

    CAS  PubMed  Google Scholar 

  • Jelinek GA. Widow spider envenomation (latrodectism): a worldwide problem. Wilderness Environ Med. 1997;8(4):226–31.

    CAS  PubMed  Google Scholar 

  • Jin L, et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. 2012;75(5):779–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, et al. Investigating synapse formation and function using human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A. 2011;108(7):3005–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.

    CAS  PubMed  Google Scholar 

  • Korherr C, et al. Identification of proangiogenic genes and pathways by high-throughput functional genomics: TBK1 and the IRF3 pathway. Proc Natl Acad Sci U S A. 2006;103(11):4240–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen JC. US Army botulinum neurotoxin (BoNT) medical therapeutics research program: past accomplishments and future directions. Drug Dev Res. 2009;70(4):266–78.

    CAS  Google Scholar 

  • Laurenza I, et al. A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies. Int J Dev Neurosci. 2013;31:679–961.

    CAS  PubMed  Google Scholar 

  • Lee G, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009;461(7262):402–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol. 2012;30(12):1244–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XJ, et al. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis. 2012;4(12):1509–25.

    CAS  PubMed  Google Scholar 

  • Li T, et al. A hydroxylated metabolite of flame-retardant PBDE-47 decreases the survival, proliferation, and neuronal differentiation of primary cultured adult neural stem cells and interferes with signaling of ERK5 MAP kinase and neurotrophin 3. Toxicol Sci. 2013;134(1):111–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, et al. Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and Ca(2+) influx. Neurotoxicology. 2012;33(1):59–69.

    CAS  PubMed  Google Scholar 

  • McNeish J, et al. High-throughput screening in embryonic stem cell-derived neurons identifies potentiators of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate receptors. J Biol Chem. 2010;285(22):17209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNutt P, et al. Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research. Biochem Biophys Res Commun. 2011;405(1):85–90.

    CAS  PubMed  Google Scholar 

  • Mehta A, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6–18.

    CAS  PubMed  Google Scholar 

  • Mellough CB, et al. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells. 2012;30(4):673–86.

    CAS  PubMed  Google Scholar 

  • Mesngon M, McNutt P. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons. Toxins (Basel). 2011;3(5):489–503.

    CAS  Google Scholar 

  • Meyer JS, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morizane A, et al. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res. 2011;89(2):117–26.

    CAS  PubMed  Google Scholar 

  • Muguruma K, Sasai Y. In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. Dev Growth Differ. 2012;54(3):349–57.

    CAS  PubMed  Google Scholar 

  • Nagavarapu U. Cell-based assays : technologies and global markets. BCC Research; Wellesley, U S A 2011. p. 188.

    Google Scholar 

  • Nat R, Dechant G. Milestones of directed differentiation of mouse and human embryonic stem cells into telencephalic neurons based on neural development in vivo. Stem Cells Dev. 2011;20(6):947–58.

    PubMed  Google Scholar 

  • Neal AP, et al. Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. Toxicol Sci. 2010;116(1):249–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • NIAID. Summary of the NIAID expert panel on botulinum neurotoxins therapeutics. In: NIAID expert panel on botulinum neurotoxins therapeutics. Bethesda: National Institute of Allergy and Infectious Diseases; 2004.

    Google Scholar 

  • Omelchenko IA, et al. The sensitivity of N-methyl-d-aspartate receptors to lead inhibition is dependent on the receptor subunit composition. J Pharmacol Exp Ther. 1996;278(1):15–20.

    CAS  PubMed  Google Scholar 

  • Park HS, et al. Neuromuscular junction in a microfluidic device. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2833–5.

    Google Scholar 

  • Pellett S. Progress in cell based assays for botulinum neurotoxin detection. Curr Top Microbiol Immunol. 2013;364:257–85.

    PubMed  PubMed Central  Google Scholar 

  • Pellett S, et al. Sensitive and quantitative detection of botulinum neurotoxin in neurons derived from mouse embryonic stem cells. Biochem Biophys Res Commun. 2011;404(1):388–92.

    CAS  PubMed  Google Scholar 

  • Potter SM. Distributed processing in cultured neuronal networks. Prog Brain Res. 2001;130:49–62.

    CAS  PubMed  Google Scholar 

  • Purkiss JR, et al. Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology. 2001;22(4):447–53.

    CAS  PubMed  Google Scholar 

  • Restani L, et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 2012;8(12):e1003087.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rush T, et al. Mechanisms of chlorpyrifos and diazinon induced neurotoxicity in cortical culture. Neuroscience. 2010;166(3):899–906.

    CAS  PubMed  Google Scholar 

  • Sanchez-Alvarez R, et al. Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers. PLoS One. 2013;8(5):e63794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger H, et al. Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR. Neuropharmacology. 2013;66:264–73.

    CAS  PubMed  Google Scholar 

  • Scarlatos A, et al. Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J Food Sci. 2008;73(3):E129–36.

    CAS  PubMed  Google Scholar 

  • Schiavo G, et al. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993;335(1):99–103.

    CAS  PubMed  Google Scholar 

  • Shew WL, et al. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci. 2011;31(1):55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, et al. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15(3):477–86, S1.

    CAS  PubMed  Google Scholar 

  • Shigemoto R, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci. 1997;17(19):7503–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JP, Suckling J, Ushkaryov Y. Penelope’s web: using alpha-latrotoxin to untangle the mysteries of exocytosis. J Neurochem. 2009;111(2):275–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, et al. In vitro neurogenesis from neural progenitor cells isolated from the hippocampus region of the brain of adult rats exposed to ethanol during early development through their alcohol-drinking mothers. Alcohol Alcohol. 2009;44(2):185–98.

    CAS  PubMed  Google Scholar 

  • Singleton RH, Povlishock JT. Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci. 2004;24(14):3543–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19.

    CAS  PubMed  Google Scholar 

  • Swistowski A, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28(10):1893–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama Y, et al. Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems. 2012;107(1):1–8.

    CAS  PubMed  Google Scholar 

  • Thomson SR, et al. Using induced pluripotent stem cells (iPSC) to model human neuromuscular connectivity: promise or reality? J Anat. 2012;220(2):122–30.

    CAS  PubMed  Google Scholar 

  • Tirrell M. Allergan’s wrinkle-busting botox to grow from therapeutic uses. In: Bloomberg businessweek. New York: Bloomberg; 2011.

    Google Scholar 

  • Toscano CD, et al. Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Brain Res Dev Brain Res. 2002;139(2):217–26.

    CAS  PubMed  Google Scholar 

  • Traynelis SF, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Vliet E, et al. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology. 2007;28(6):1136–46.

    PubMed  Google Scholar 

  • Vetter I. Development and optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. Adv Exp Med Biol. 2012;740:45–82.

    CAS  PubMed  Google Scholar 

  • Visan A, et al. Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology. 2012;33(5):1135–46.

    CAS  PubMed  Google Scholar 

  • Wada T, et al. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One. 2009;4(8):e6722.

    PubMed  PubMed Central  Google Scholar 

  • Weiss D. Neurotoxicity assessment by recording electrical activity from neuronal networks on microelectrode array neurochips. In: Aschner M, Suñol C, Bal-Price A, editors. Cell culture techniques. New York: Humana Press; 2011. p. 467–80.

    Google Scholar 

  • Whitemarsh RC, et al. Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection. Toxicol Sci. 2012;126(2):426–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wianny F, Bourillot PY, Dehay C. Embryonic stem cells in non-human primates: an overview of neural differentiation potential. Differentiation. 2011;81(3):142–52.

    CAS  PubMed  Google Scholar 

  • Wichterle H, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110(3):385–97.

    CAS  PubMed  Google Scholar 

  • Xia G, et al. Generation of neural cells from DM1 induced pluripotent stem cells as cellular model for the study of central nervous system neuropathogenesis. Cell Reprogram. 2013;15(2):166–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YM, et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell. 2013;12(6):713–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ylä-Outinen L, et al. Human cell-based micro electrode array platform for studying neurotoxicity. Front Neuroeng. 2010;3:111.

    PubMed  PubMed Central  Google Scholar 

  • Zhou W, et al. Homeostatically regulated synchronized oscillations induced by short-term tetrodotoxin treatment in cultured neuronal network. Biosystems. 2009;95(1):61–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick McNutt .

Editor information

Editors and Affiliations

Additional information

Disclaimer: The views expressed in this chapter are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the US Government.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McNutt, P., Beske, P., Thirunavukkarsu, N. (2015). Cell-Based Assays for Neurotoxins. In: Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R. (eds) Biological Toxins and Bioterrorism. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5869-8_31

Download citation

Publish with us

Policies and ethics