Skip to main content

Deficits of Grasping in Cerebellar Disorders

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Given its stereotyped cytoarchitecture, the widespread connections with cortical and subcortical sensory-motor structures, and the neural activity of cerebellar Purkinje cells during sensory-motor tasks, the cerebellum is considered to play a major role in the control of grasping. The cerebellum is involved in the timing and coordination of hand transport, grasp formation, and isometric grip force when reaching for, grasping, and handling an object. In addition, there is evidence from human lesion and brain imaging studies that the cerebellum is essential for the establishment and maintenance of internal sensory-motor representations, so-called internal models, related to motor output and sensory input during grasping. These representations are necessary to predict the consequences of ones’ own movements. This chapter summarizes theoretical aspects, data from brain imaging, and behavioral data obtained from patients with cerebellar lesions characterizing the specific role of the cerebellum for grasping movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884

    Article  PubMed  CAS  Google Scholar 

  • Boecker H, Lee A, Mühlau M, Ceballos-Baumann AO, Ritzl A, Spilker M, Marquardt C, Hermsdörfer J (2005) Force level independent representation of predictive grip force-load force coupling: a PET activation study. Neuroimage 25:243–252

    Article  PubMed  CAS  Google Scholar 

  • Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119(11):2528–2537

    Article  PubMed  CAS  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736

    Article  PubMed  CAS  Google Scholar 

  • De Gruijl, von der Smagt P, De Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777–786

    Article  Google Scholar 

  • Fellows SJ, Ernst J, Schwarz M, Topper R, Noth J (2001) Precision grip in cerebellar disorders in man. Clin Neurophysiol 112:1793–1802

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Belttzner MA (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat Neurosci 3:737–741

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M (1994) Cerebellar agenesis. Brain 117:1209–1212

    Article  PubMed  Google Scholar 

  • Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement. Trends Neurosci 23:613–617

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Grill SE, Hallett M, Marcus C, McShane L (1994) Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 117:1433–1447

    Article  PubMed  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535

    Article  Google Scholar 

  • Hore J, Wild B, Diener HC (1991) Cerebellar dysmetria at the elbow, wrist and fingers. J Neurophysiol 65:563–571

    PubMed  CAS  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshiaka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303, Review

    Article  PubMed  Google Scholar 

  • Johansson RS, Westling G (1988) Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res 71:72–86

    PubMed  CAS  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: FMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    Article  PubMed  Google Scholar 

  • Macchi G, Bentivoglio M (1977) Agenesis or hypoplasia of cerebellar structures. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 30. North-Holland, Amsterdam, pp 367–393

    Google Scholar 

  • Manto M, Godaux E, Jacquy J (1994) Cerebellar hypermetria is is larger when the inertial load is artificially increased. Ann Neurol 35:45–52

    Article  PubMed  CAS  Google Scholar 

  • Manto MU (2010) Physiology of the cerebellum. In: Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, Cambridge, pp 23–35

    Chapter  Google Scholar 

  • Maschke M, Gomez CM, Tuite P, Konczak J (2003) Dysfunction of the basal ganglia, but not the cerebellum, impaires kinaesthesia. Brain 126:2312–2322

    Article  PubMed  Google Scholar 

  • Monzee J, Smith AM (2004) Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol 91:1230–1239

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J (2007a) The role of the cerebellum for predictive control of grasping. Cerebellum 6:7–17

    Article  PubMed  Google Scholar 

  • Nowak DA, Timmann D, Hermsdörfer J (2007b) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH (2002) Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res 145:28–39

    Article  PubMed  Google Scholar 

  • Rabe K, Brandauer B, Li Y, Gizewski ER, Timmann D, Hermsdörfer J (2009) Size-weight illusion, anticipation and adaption of fingertip forces in patients with cerebellar degeneration. J Neurophysiol 101:569–579

    Article  PubMed  CAS  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  PubMed  CAS  Google Scholar 

  • Rost K, Nowak DA, Timmann D, Hermsdörfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116:1405–1414

    Article  PubMed  Google Scholar 

  • Rubinstein HS, Freeman W (1940) Cerebellar agenesis. J Nerv Ment Dis 92:489–502

    Article  Google Scholar 

  • Serrien JD, Wiesendanger M (1999) Grip-load coordination in cerebellar patients. Exp Brain Res 128:76–80

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Dimitrova A, Hein-Kropp C, Wilhelm H, Dörfler A (2003) Cerebellar agenesis: clinical, neurophysiological and MR findings. Neurocase 9:402–413

    Article  PubMed  CAS  Google Scholar 

  • Topka H, Massaquoi S (2002) Pathophysiology of clinical cerebellar signs. In: Manto M, Pandolfo M (eds) The cerebellum and its disorders. Cambridge University Press, Cambridge, pp 121–135

    Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timmann D, Honnorat J, Nighoghossian N, Manyam B (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

  • Zackowski KM, Thach WT Jr, Bastian AJ (2002) Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res 146:511–522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nowak, D.A., Timmann, D., Hermsdörfer, J. (2013). Deficits of Grasping in Cerebellar Disorders. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_73

Download citation

Publish with us

Policies and ethics