Skip to main content

Biogeophysics

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Biogeophysics. Sub-discipline of exploration geophysics focusing on the geophysical signatures resulting from microbial interactions with geologic media.

Introduction

Geophysical imaging techniques have the potential to measure not just the subsurface physical and chemical properties, as geophysics is conventionally used, but also microbes, microbial processes, and microbe-mineral interactions. “Biogeophysics” is defined here as a rapidly evolving discipline of exploration geophysics concerned with the geophysical signatures of microbial interactions with geologic media that combines the fields of Microbiology, Biogeoscience, and Geophysics (Atekwana and Slater, 2009) (Figure 1). Within this context, biogeophysics examines the links between dynamic subsurface microbial processes, microbial-induced alterations to geologic materials, and geophysical signatures. We note that the term biogeophysics is also used in other disciplines (a) to describe research into the origins of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abdel Aal, G., Atekwana, E., Radzikowski, S., and Rossbach, S., 2009. Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron-oxide coated sands. Geophysical Research Letters, 36(36), L04403, doi: 10.1029/2008GL036196.

    Google Scholar 

  • Abdel Aal, G. Z. A., Atekwana, E. A., and Slater, L. D., 2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters, 31(12), L12505, doi:10.1029/2004gl020030.

    Article  Google Scholar 

  • Allen, J. P., Atekwana, E. A., Duris, J. W., Werkema, D. D., and Rossbach, S., 2007. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Applied and Environmental Microbiology, 73(9), 2860–2870, doi:10.1128/aem.01752-06.

    Article  Google Scholar 

  • Atekwana, E. A., Atekwana, E. A., Werkema, D. D., Jr., Allen, J., Smart, L., Duris, J., Cassidy, D. P., Sauck, W. A., and Rossbach, S., 2004. Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophysical Research Letters, 31, L23501, doi: 10.1029/2004GL021359.

    Google Scholar 

  • Atekwana, E. A., and Slater, L., 2009. Biogeophysics: A new frontier in Earth science research. Reviews of Geophysics, 47, RG4004, doi: 10.1029/2009RG000285.

    Google Scholar 

  • Bazylinski, D. A., and Frankel, R. B., 2004. Magnetosome formation in prokaryotes. Nature Reviews. Microbiology, 2(3), 217–230.

    Article  Google Scholar 

  • Bennett, P. C., Hiebert, F. K., and Choi, W. J., 1996. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chemical Geology, 132(1–4), 45–53.

    Article  Google Scholar 

  • Cassidy, D. P., Werkema, D. D., Sauck, W. A., Atekwana, E., Rossbach, S., and Duris, J., 2001. The effects of LNAPL biodegradation products on electrical conductivity measurements. Journal of Environmental and Engineering Geophysics, 6(1), 47–52.

    Article  Google Scholar 

  • Comas, X., and Slater, L., 2007. Evolution of biogenic gases in peat blocks inferred from noninvasive dielectric permittivity measurements. Water Resources Research, 43(5), W05424, doi:10.1029/2006wr005562.

    Article  Google Scholar 

  • Cozzarelli, I. M., Herman, J. S., Baedecker, M. J., and Fischer, J. M., 1999. Geochemical heterogeneity of a gasoline-contaminated aquifer. Journal of Contaminant Hydrology, 40(3), 261–284.

    Article  Google Scholar 

  • Davis, C. A., Atekwana, E., Slater, L. D., Rossbach, S., and Mormile, M. R., 2006. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophysical Research Letters, 33(18), L18403. 10.1029/2006gl027312.

    Article  Google Scholar 

  • Davis, C. A., Pyrak-Nolte, L. J., Atekwana, E. A., Werkema, D. D., and Haugen, M. E., 2009. Microbial-induced heterogeneity in the acoustic properties of porous media. Geophysical Research Letters, 36, L21405, doi:10.1029/2009gl039569.

    Article  Google Scholar 

  • DeJong, J. T., Fritzges, M. B., and Nusslein, K., 2006. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381–1392, doi:10.1061/(asce)1090-0241(2006) 132:11(1381).

    Article  Google Scholar 

  • DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C., 2010. Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210, doi: 10.1016/j.ecoleng.2008.12.029.

    Article  Google Scholar 

  • Ferris, F. G., Fratton, C. M., Gertis, J. P., Schultzelam, S., and Lollar, B. S., 1995. Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near rock-creek, British-Columbia, Canada. Geomicrobiology Journal, 13(1), 57–67.

    Article  Google Scholar 

  • Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Dong, H. L., Onstott, T. C., Hinman, N. W., and Li, S. M., 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62(19–20), 3239–3257.

    Article  Google Scholar 

  • Hiebert, F. K., and Bennett, P. C., 1992. Microbial control of silicate weathering in organic-rich ground water. Science, 258(5080), 278–281.

    Article  Google Scholar 

  • Jimenez-Lopez, C., Romanek, C. S., and Bazylinski, D. A., 2010. Magnetite as a prokaryotic biomarker: a review. Journal of Geophysical Research, 115, G00G03, doi: 10.1029/2009JG001152.

    Google Scholar 

  • McMahon, P. B., Chapelle, F. H., Falls, W. F., and Bradley, P. M., 1992. Role of microbial processes in linking sandstone diagenesis with organic-rich clays. Journal of Sedimentary Petrology, 62(1), 1–10.

    Google Scholar 

  • McMahon, P. B., Vroblesky, D. A., Bradley, P. M., Chapelle, F. H., and Gullett, C. D., 1995. Evidence for enhanced mineral dissolution in organic acid-rich shallow ground-water. Ground Water, 33(2), 207–216.

    Article  Google Scholar 

  • Minsley, B., Sogade, J., and Morgan, F. D., 2007. Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resources Research, 43, W04429, doi:10.1029/2005WR003996.

    Google Scholar 

  • Naudet, V., Revil, A., Bottero, J.-Y., and Bégassat, P., 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophysical Research Letters, 30(21), 2091.

    Article  Google Scholar 

  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and Sayama, M., 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463(7284), 1071–1074.

    Article  Google Scholar 

  • Ntarlagiannis, D., Williams, K. H., Slater, L., and Hubbard, S., 2005. The low frequency electrical response to microbially induced sulfide precipitation. Journal of Geophysical Research, 110, G02009.

    Google Scholar 

  • Prodan, C., Mayo, F., Claycomb, J. R., and Miller, J. H. J., 2004. Low-frequency, low-field dielectric spectroscopy of living cell suspensions. Journal of Applied Physics, 95(7), 3754–3756.

    Article  Google Scholar 

  • Prodan, E., Prodan, C., and Miller, J. H., 2008. The dielectric response of spherical live cells in suspension: an analytic solution. Biophysical Journal, 95(9), 4174–4182, doi:10.1529/biophysj.108.137042.

    Article  Google Scholar 

  • Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R., 2005. Extracellular electron transfer via microbial nanowires. Nature, 435, 1098–1101.

    Article  Google Scholar 

  • Revil, A., Mendonça, C. A., Atekwana, E. A., Kulessa, B., Hubbard, S. S., and Bohlen, K. J., 2010. Understanding biogeobatteries: Where geophysics meets microbiology. Journal of Geophysical Research, 115, 10.1029/2009jg001065.

    Google Scholar 

  • Rijal, M. L., Appel, E., Petrovský, E., and Blaha, U., 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environmental Pollution, 158(5), 1756–1762, doi: 10.1016/j.envpol.2009.11.012.

    Google Scholar 

  • Sato, M., and Mooney, H. M., 1960. The electrochemical mechanism of sulfide self-potentials. Geophysics, 25(1), 226–249.

    Article  Google Scholar 

  • Sauck, W. A., Atekwana, E., and Nash, M. S., 1998. High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. Journal of Environmental and Engineering Geophysics, 2(3), 203–212.

    Google Scholar 

  • Slater, L., Ntarlagiannis, D., Personna, Y. R., and Hubbard, S., 2007. Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophysical Research Letters, 34(21), L21404, doi:10.1029/2007gl031840.

    Article  Google Scholar 

  • Stoy, R. D., Foster, K. R., and Schwan, H. P., 1982. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Physics in Medicine and Biology, 27, 501–513.

    Article  Google Scholar 

  • Werkema, D. D., Jr., Atekwana, E. A., Endres, A. L., Sauck, W. A., and Cassidy, D. P., 2003. Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophysical Research Letters, 30(12), 1647–1651.

    Article  Google Scholar 

  • Williams, K. H., Ntarlagiannis, D., Slater, L. D., Dohnalkova, A., Hubbard, S. S., and Banfield, J. F., 2005. Geophysical imaging of stimulated microbial biomineralization. Environmental Science & Technology, 39(19), 7592–7600.

    Article  Google Scholar 

  • Wu, Y., S. Hubbard, Williams, K. H. and Ajo-Franklin, J., 2010. On the complex conductivity signatures of calcite precipitation. Journal of Geophysical Research, 115, G00G04, doi: 10.1029/2009JG001129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Slater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Slater, L., Atekwana, E. (2011). Biogeophysics. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_172

Download citation

Publish with us

Policies and ethics