Skip to main content

Nanofiltration (Transport Phenomena)

  • Reference work entry
  • First Online:
Encyclopedia of Membranes
  • 17 Accesses

Nanofiltration membranes are characterized by effective pore diameters ranging from ~1 nm to a few nanometers, and most of them acquire an electric charge when brought into contact with a polar medium. The combination of nanometric dimensions pores with electrically charged materials implies that the separation of solutes results from complex mechanisms that may include steric hindrance and Donnan, dielectric, and transport effects.

NF membranes are usually described as a bundle of capillaries with effective structural features (pore size and thickness-to-porosity ratio) and electrical properties such as their effective volume charge density (defined as the number of moles of fixed charges per unit of pore volume). The standard theory of NF is based on a macroscopic description of transport, which is actually a simplified version of the so-called space charge model originally developed by Osterle and co-workers (Morrison and Osterle 1965; Gross and Osterle 1968; Fair and Osterle 1971)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandini S, Vezzani D (2003) Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem Eng Sci 58:3303–3326

    Article  CAS  Google Scholar 

  • Bowen WR, Mohammad AW, Hilal N (1997) Characterization of nanofiltration membranes for predictive purposes–use of salts, uncharged solutes and atomic force microscopy. J Membr Sci 126:91–105

    Article  CAS  Google Scholar 

  • Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J 33:1409–1425

    Article  CAS  Google Scholar 

  • Déon S, Dutournié P, Bourseau P (2007) Modeling nanofiltration with Nernst–Planck approach and polarization layer. AIChE J 53:1952–1969

    Article  CAS  Google Scholar 

  • Fair JC, Osterle JF (1971) Reverse electrodialysis in charged capillary membranes. J Chem Phys 54:3307–3316

    Article  CAS  Google Scholar 

  • Gross RJ, Osterle JF (1968) Membrane transport characteristics of ultrafine capillaries. J Chem Phys 49:228–234

    Article  CAS  Google Scholar 

  • Hoffer E, Kedem O (1967) Hyperfiltration in charged membranes: the fixed charge model. Desalination 2:25–32

    Article  CAS  Google Scholar 

  • Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J (2002) Analysis of the salt retention of a titania membrane using the “DSPM” model: effect of pH, salt concentration and nature. J Membr Sci 208:315–329

    Article  CAS  Google Scholar 

  • Lefebvre X, Palmeri J (2005) Nanofiltration theory: good co-ion exclusion approximation for single salts. J Phys Chem B 109:5525–5540

    Article  CAS  Google Scholar 

  • Lefebvre X, Palmeri J, David P (2004) Nanofiltration theory: an analytic approach for single salts. J Phys Chem B 108:16811–16824

    Article  CAS  Google Scholar 

  • Morrison FA, Osterle JF (1965) Electrokinetic energy conversion in ultrafine capillaries. J Chem Phys 43:2111–2115

    Article  CAS  Google Scholar 

  • Oatley DL, Cassey B, Jones P, Bowen WR (2005) Modeling the performance of membrane nanofiltration- recovery of a high value product from a process waste stream. Chem Eng Sci 60:1953–1964

    Article  CAS  Google Scholar 

  • Palmeri J, Blanc P, Larbot A, David P (1999) Theory of pressure driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes. J Membr Sci 160:141–170

    Article  CAS  Google Scholar 

  • Schlögl R (1964) Stofftransport durch membranen. Verlag Dr. Steinkopff, Darmstadt

    Google Scholar 

  • Szymczyk A, Fievet P (2005) Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J Membr Sci 252:77–88

    Article  CAS  Google Scholar 

  • Szymczyk A, Aoubiza B, Fievet P, Pagetti J (1999) Electrokinetic phenomena in homogeneous cylindrical pores. J Colloid Interface Sci 216:285–296

    Article  CAS  Google Scholar 

  • Tsuru T, Nakao SI, Kimura S (1990) Effective charge-density and pore structure of charged ultrafiltration membranes. Chem Eng Jpn 23:604–610

    Article  CAS  Google Scholar 

  • Wang XL, Tsuru T, Nakao SI, Kimura S (1997) The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J Membr Sci 135:19–32

    Article  CAS  Google Scholar 

  • Yaroshchuk AE (2001) Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion. Sep Purif Technol 22–23:143–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Fievet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fievet, P. (2016). Nanofiltration (Transport Phenomena). In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44324-8_1721

Download citation

Publish with us

Policies and ethics