Skip to main content

Spherulitic Growth in Crystalline Polymers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymers and Composites

Definition

The most common higher order structure of crystalline polymers is called spherulite. A spherulite is a polycrystalline aggregate densely filled with thin lamellar crystals and formed by consecutive lamellar branching and reorientation of those crystals in non-crystallographic directions. Polymer spherulites have inner structures characterized by periodic banding or patchy patterns that are created by the reorientation with correlated twisting or in random directions, respectively. The specific reorientation is related to the unbalance of surface stresses caused by the chain folding on the upper and lower basal planes of the lamellar crystals. The branching mechanism is related to the fingering instability of the growth front caused by a gradient in chemical potential ahead of the growth front. The dynamical coupling of the branching and reorientation evolves the spherulitic growth in crystalline polymers.

Introduction

Crystalline polymeric materials form higher order...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abo el Maaty MI, Bassett DC (2001) On fold surface ordering and re-ordering during the crystallization of polyethylene from the melt. Polymer 42:4957–4963

    Article  CAS  Google Scholar 

  • Bassett DC (2003) Polymer spherulites: a modern assessment. J Macromol Sci B42:227–256

    Article  CAS  Google Scholar 

  • Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene. Proc R Soc Lond A377:61–71

    Article  Google Scholar 

  • Bassett DC, Frank FC, Keller A (1959) Evidence for distinct sectors in polymer single crystals. Nat (Lond) 184:810–811

    Article  CAS  Google Scholar 

  • Bassett DC, Olley RH, Sutton SJ, Vaughan AS (1996) On chain conformations and spherulitic growth in monodisperse n-C294H590. Polymer 37:4993–4997

    Article  CAS  Google Scholar 

  • Bernauer F (1929) Gedrillte Kristalle. Borntraeger, Berlin

    Google Scholar 

  • Duan YX, Jiang Y, Jiang SD, Li L, Yan SK, Schultz JM (2004) Depletion-induced nonbirefringent banding in thin isotactic polystyrene thin films. Macromolecules 37:9283–9286

    Article  CAS  Google Scholar 

  • GaÅ‚eski A, Koenczoel L, Piórkowska E, Baer E (1987) Acoustic emission during polymer crystallization. Nature 325:40–41

    Article  Google Scholar 

  • Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF (2004) A general mechanism of polycrystalline growth. Nat Mater 3:645–650

    Article  Google Scholar 

  • Hatwalne Y, Muthukumar M (2010) Chiral symmetry breaking in crystals of achiral polymers. Phys Rev Lett 105:107801

    Article  Google Scholar 

  • Kajioka H, Hikosaka M, Taguchi K, Toda A (2008) Branching and re-orientation of lamellar crystals in non-banded poly(butene-1) spherulites. Polymer 49:1685–1692

    Article  CAS  Google Scholar 

  • Kajioka H, Yoshimoto S, Taguchi K, Toda A (2010) Morphology and crystallization kinetics of it-polystyrene spherulites. Macromolecules 43:3837–3843

    Article  CAS  Google Scholar 

  • Kajioka H, Taguchi K, Toda A (2011) Cellular crystallization in thin melt film of it-poly(butene-1): an implication to spherulitic growth. Macromolecules 44:9239–9246

    Article  CAS  Google Scholar 

  • Keith HD (1964) On the relation between different morphological forms in high polymers. J Polym Sci Part A Polym Chem 2:4339–4360

    CAS  Google Scholar 

  • Keith HD, Padden FJ Jr (1963) A phenomenological theory of spherulitic crystallization. J Appl Phys 34:2409–2421

    Article  CAS  Google Scholar 

  • Keith HD, Padden FJ Jr (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42

    Article  CAS  Google Scholar 

  • Keith HD, Padden FJ Jr, Russell TP (1989) Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. Macromolecules 22:666–675

    Article  CAS  Google Scholar 

  • Kyu T, Chiu H-W, Guenthner AJ, Okabe Y, Saito H, Inoue T (1999) Rhythmic growth of target and spiral spherulites of crystalline polymer blends. Phys Rev Lett 83:2749–2753

    Article  CAS  Google Scholar 

  • Li CY, Cheng SZD, Weng X, Ge JJ, Bai F, Zhang JZ, Calhoun BH, Harris FW, Chien L-C, Lotz B (2001) Left or right, it is a matter of one methylene unit. J Am Chem Soc 123:2462–2463

    Article  CAS  Google Scholar 

  • Lotz B, Cheng SZD (2005) A critical assessment of unbalanced surface stress as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610

    Article  CAS  Google Scholar 

  • Magill JH (2001) Review spherulites: a personal perspective. J Mater Sci 36:3143–3164

    Article  CAS  Google Scholar 

  • Okano K (1964) Note on the lamellar twist is polymer spherulites. Jpn J Appl Phys 3:351–353

    Article  CAS  Google Scholar 

  • Reneker DH, Geil PH (1960) Morphology of polymer single crystals. J Appl Phys 31:1916–1925

    Article  CAS  Google Scholar 

  • Saracovan J, Keith HD, Manley RSJ, Brown GR (1999) Banding in spherulites of polymers having uncompensated main-chain chirality. Macromolecules 32:8918–8922

    Article  CAS  Google Scholar 

  • Schultz JM (2001) Polymer crystallization, Chapter 10. Oxford University Press, Oxford

    Google Scholar 

  • Schultz JM, Kinloch DR (1969) Transverse screw dislocations: a source of twist in crystalline polymer ribbons. Polymer 10:271–278

    Article  CAS  Google Scholar 

  • Tiller WA (1991) The science of crystallization: macroscopic phenomena and defect generation, Chapter 5 and 6. Cambridge University Press, New York

    Book  Google Scholar 

  • Toda A, Keller A (1993) Growth of polyethylene single crystals from the melt: morphology. Colloid Polym Sci 271:328–342

    Article  CAS  Google Scholar 

  • Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) Branching and higher order structure in banded polyethylene spherulites. Macromolecules 41:2484–2493

    Article  CAS  Google Scholar 

  • Toda A, Taguchi K, Kajioka H (2012) Growth of banded spherulites of poly(epsilon-caprolactone) from the blends: an examination of the modeling of spherulitic growth. Polymer 53:1765–1771

    Article  CAS  Google Scholar 

  • Vaughan AS (1993) Etching and morphology of poly(vinylidene fluoride). J Mater Sci 28:1805–1813

    Article  CAS  Google Scholar 

  • Ye H-M, Wang J-S, Tang S, Xu J, Feng X-Q, Guo B-H, Xie X-M, Zhou J-J, Li L, Wu Q, Chen G-Q (2010) Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 43:5762–5770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Toda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Toda, A. (2013). Spherulitic Growth in Crystalline Polymers. In: Palsule, S. (eds) Encyclopedia of Polymers and Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics