Skip to main content

Bio-acrylates

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 469 Accesses

Synonyms

Bio-acrylates; Itaconic acid; Tulipalin A

Definition

Acrylates are among the most versatile chemicals and are used as building blocks for manufacturing commodity products such as vinyl polymers. Renewable vinyl monomers such as tulipalin A and itaconic acid are naturally occurring acrylates and are termed bio-acrylates. Biobased vinyl polymers consisting of bio-acrylate monomers are considered to be promising materials because of their carbon neutrality and durability.

Bio-acrylates

Acrylates belong to a family of chemicals containing the acryloyl group (H2C=CH–C(=O)–) (Fig. 1). Owing to the electron-deficient vinylic double bond present in the acryloyl group, acrylates exhibit high reactivity in radical polymerization, as vinyl monomers can be directly polymerized to vinyl polymers. Acrylates are commonly used as raw materials in the manufacture of commodity products such as adhesives, coatings, plastics, and textiles [1]. Among the products derived from acrylates, sodium...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gerhartz W, Yamamoto YS (eds) (2011) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Straathof AJ, Sie S, Franco TT, van der Wielen LA (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67(6):727–734

    Article  CAS  Google Scholar 

  3. Straathof AJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114(3):1871–1908

    Article  CAS  Google Scholar 

  4. Smith PB, Gross PA (eds) (2012) Biobased monomers, polymers, and materials, ACS symposium series. ACS publications, New York

    Google Scholar 

  5. Tschan MJ-L, Brulé E, Haquette P, Thomas CM (2012) Synthesis of biodegradable polymers from renewable resources. Polym Chem 3:836–851

    Article  CAS  Google Scholar 

  6. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606

    Article  CAS  Google Scholar 

  7. Klement T, Büchs J (2013) Itaconic acid – a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  Google Scholar 

  8. Mark HF, Othmer DF, Overberger CG, Seaborg GT (eds) (1981) Kirk–Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  9. Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 23(9):883–896

    Google Scholar 

  10. Carlson RM, Oyler AR (1976) Direct methods for α-methylene lactone synthesis using itaconic acid derivatives. J Org Chem 41(26):4065–4069

    Article  CAS  Google Scholar 

  11. Gowda RR, Chen EYX (2014) Synthesis of β-methyl-α-methylene-γ-butyrolactone from biorenewable itaconic acid. Org Chem Front 1:230–234

    Article  CAS  Google Scholar 

  12. Mosnáček J, Matyjaszewski K (2008) Atom transfer radical polymerization of tulipalin A: a naturally renewable monomer. Macromolecules 41(15):5509–5511

    Article  Google Scholar 

  13. Zhou JW, Schmidt AM, Ritter H (2010) Bicomponent transparent polyester networks with shape memory effect. Macromolecules 43(2):939–942

    Article  CAS  Google Scholar 

  14. Otsu T, Watanabe H, Yang J-Z, Yoshioka M, Matsumoto A (1992) Synthesis and characterization of polymers from itaconic acid derivatives. Makromol Chem Macromol Symp 63:87–104

    Article  CAS  Google Scholar 

  15. Marvel CS, Shepherd TH (1959) Polymerization reactions of itaconic acid and some of its derivatives. J Org Chem 24(5):599–605

    Article  CAS  Google Scholar 

  16. Tate BE (1967) Polymerization of itaconic acid and derivatives. Adv Polym Sci 5:214–232

    Article  CAS  Google Scholar 

  17. Medwaya AM, Sperry J (2014) Heterocycle construction using the biomass-derived building block itaconic acid. Green Chem 16:2084–2101

    Article  Google Scholar 

  18. Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15:245–254

    Article  CAS  Google Scholar 

  19. Ali MA, Tateyama S, Oka Y, Kaneko D, Okajima MK, Kaneko T (2013) Syntheses of high-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules 46(10):3719–3725

    Article  CAS  Google Scholar 

  20. Okuda T, Ishimoto K, Ohara H, Kobayashi S (2012) Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly(l-lactic acid) grafts. Macromolecules 45(10):4166–4174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Aso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Aso, Y. (2015). Bio-acrylates. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_380-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_380-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics