Skip to main content

Emulsion Copolymerization (Also Leading to Core-Shell Structures)

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 519 Accesses

Synonyms

Composite Particle; Hybrid Polymeric Nanoparticle; Multi-Phase Emulsion Polymerization; Seeded Emulsion Polymerization; Structured Latex

Definition

The emulsion polymerization of multiple comonomers or phases confined within polymeric nanoparticle dimensions for the purpose of distributing the relevant composition within individual macromolecular chains or by spatially distributing multiple (co)polymer phases within the nanoparticles.

Introduction

Polymeric nanoparticles are prepared by a variety of methods. This variety can come in the form of process type (e.g., emulsion, miniemulsion, microemulsion, suspension, dispersion polymerization) [1], process parameters (e.g., batch, semi-batch, or continuous feed of reactants to the reactor) [2], polymerization mechanism (e.g., free-radical polymerization) [3], and polymerization chemistry (e.g., in terms of composition: homopolymerization, copolymerization, or either in multiple phases confined within the same particles) [4].

For...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Urban D, Takamura K (2002) Polymer dispersions and their industrial applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Schork FJ, Deshpande PB, Leffew KW (1993) Control of polymerization reactors. Marcel Dekker, New York

    Google Scholar 

  3. Odian G (2004) Principles of polymerization. Wiley, Hoboken

    Book  Google Scholar 

  4. Lovell PA, El-Aasser MS (1997) Emulsion polymerization and emulsion polymers. Wiley, New York

    Google Scholar 

  5. Fitch RM (1997) Chapter 1 - Introduction In: Fitch RM (ed) Polymer Colloids: A Comprehensive Introduction. Academic Press, London.

    Google Scholar 

  6. Gilbert RG (1995) Emulsion polymerization: a mechanistic approach. Academic, London/San Diego

    Google Scholar 

  7. Candau F (1992) Polymerization in media. In: Paleos CM (ed) Polymerization in organized media. Gordon and Breach, Philadelphia, pp 215–283 (Chap 4)

    Google Scholar 

  8. Tsavalas JG, Schork FJ (2004) The morphology of alkyd/acrylate latexes produced via hybrid miniemulsion polymerization: grafting mechanisms. Progr Colloid Polym Sci 124:126–130

    Google Scholar 

  9. Tomovska R, de la Cal JC, Asua JM (2013) Reactions in heterogeneous media. In: Reed WF, Alb AM (eds) Monitoring polymerization reactions: from fundamentals to applications. Wiley, Hoboken

    Google Scholar 

  10. Tripathi AK, Tsavalas JG, Sundberg DC (2014) Partitioning of functional monomers in emulsion polymerization: distribution of carboxylic acid and hydroxy (meth)acrylate monomers between water and polymers. Ind Eng Chem Res 53(16):6600–6612

    Article  CAS  Google Scholar 

  11. Shoaf GL, Poehlein GW (1990) Partition of carboxylic acids in an emulsion copolymerization system. Ind Eng Chem Res 29:1701–1709

    Article  CAS  Google Scholar 

  12. Van Herk A, Heuts H (2005) Emulsion polymerization. Wiley, New York

    Google Scholar 

  13. Blackley DC (1997) Polymer latices: science and technology, vol 2: types of latices. Springer, Netherlands

    Book  Google Scholar 

  14. Frank PG, Tuten BT, Prasher A, Chao D, Berda EB (2014) Intra-chain photodimerization of pendant anthracene units as an efficient route to single-chain nanoparticle fabrication. Macromol Rapid Commun 35:249–253

    Article  CAS  Google Scholar 

  15. Sundberg DC, Durant YG (2003) Latex particle morphology, fundamental aspects: a review. Polym React Eng 11(3):379–432

    Article  CAS  Google Scholar 

  16. Stubbs JM, Tsavalas JG, Carrier RH, Sundberg DC (2010) The structural evolution of composite latex particles during starve-fed emulsion polymerization: modeling and experiments for kinetically frozen morphologies. Macromol React Eng 4(6–7):424–431

    Article  CAS  Google Scholar 

  17. Karlsson LE, Karlsson OJ, Sundberg DC (2003) Nonequilibrium particle morphology development in seeded emulsion polymerization. II. Influence of seed polymer Tg. J Appl Poly Sci 90:905–915

    Article  CAS  Google Scholar 

  18. Tsavalas JG, Sundberg DC (2010) Hydroplasticization of polymers – model predictions and application to emulsion polymers. Langmuir 26(10):6960–6966

    Article  CAS  Google Scholar 

  19. Bourgeat-Lami E, Lansalot M (2010) Chapter 3 - Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. In: van Herk AM, Landfester K (eds) Hybrid latex particles: preparation with (mini)emulsion polymerization, vol 233. Springer, Berlin

    Chapter  Google Scholar 

  20. Svenson S, Prud'homme RK (eds) (2012) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Springer, New York

    Google Scholar 

  21. Sanchez-Silva L, Tsavalas JG, Sundberg DC, Sanchez P, Rodriguez JF (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49:12204–12211

    Article  CAS  Google Scholar 

  22. Blankenship RM, Kowalski A (1986) Production of core-sheath polymer particles containing voids, resulting product and use. US Patent US4594363 A. Rohm and Haas Company

    Google Scholar 

  23. Lee DI, Mulders MR, Nicholson DJ, Leadbetter AN (1992) Opacifying plastic pigments for paper coatings. US Patent US5157084 A. The Dow Chemical Company

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Tsavalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tsavalas, J.G. (2014). Emulsion Copolymerization (Also Leading to Core-Shell Structures). In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_346-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_346-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics