Skip to main content

Bio-Based Fillers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Agro-waste materials; Bio-fillers

Definition

Agro-polymers presented in are the polysaccharides and the proteins. They are often used to elaborate multiphase materials.

Background

Fillersare particles added to polymeric materials to lower the consumption of more expensive polymer material improve or to better some properties of the composite material. Worldwide millions of tons of fillers are used every year in different application areas, such as paper, plastics, rubber, paints, coatings, adhesives, and sealants. Recently, ecological concerns have resulted in a renewed interest in natural, renewable resources-based and compostable materials; bio-fillers have been increasingly used as fillers in polymer composites. In general, these organic fillers or agro-polymers presented in are the polysaccharides and the proteins. They are often used to elaborate multiphase materials. Polysaccharides are the most abundant macromolecules in the biosphere. The classification of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. J Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  2. Rowell RM, Sanadi AR, Caulfield DF, Jacobson E (1997) Utilization of natural fibers in plastic composites: problems and opportunities. In: Leão AL, Carvalho FX, Frollini E (eds) Lignocellulosic-plastic composites. USP & UNESP, São Paulo, pp 23–51

    Google Scholar 

  3. Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym Plast Technol Eng 37(4):451–468

    Article  CAS  Google Scholar 

  4. Din RH, Musa L, Aziz AA, Tay G-S (2010) Unsaturated polyester-kenaf composites: the effects of a modified montmorillonite filler on the tensile properties. Polym Plast Technol Eng 49(9):929–937

    Article  CAS  Google Scholar 

  5. Anuar H, Ahmad SH, Rasid R, Daud NS (2006) Nik: tensile and impact properties of thermoplastic natural rubber reinforced short glass fiber and empty fruit bunch hybrid composites. Polym Plast Technol Eng 45(9):1059–1063

    Article  CAS  Google Scholar 

  6. Mousa A, Heinrich G, Wagenknecht U (2010) Thermoplastic composites based on renewable natural resources: unplasticized PVC/olive husk. Int J Polym Mater 59:843–853. doi:10.1080/00914037.2010.504143

    Article  CAS  Google Scholar 

  7. Mousa A, Heinrich G, Gohs U, Hassler R, Wagenknecht U (2009) Application of renewable agro-waste based olive pomace on the mechanical and thermal performance of toughened PVC. Polym Plast Technol Eng 48:1030–1040

    Article  CAS  Google Scholar 

  8. Mousa A, Heinrich G, Kretzschmar B, Wagenknecht U, Das A (2012) Utilization of agrowaste polymers in PVC/NBR alloys: tensile, thermal and morphological properties. Int J Chem Eng Art ID: 121496, p 5. doi:10.1155/2012/121496

    Google Scholar 

  9. Mousa A, Heinrich G (2011) Cure characteristics and mechanical properties of carboxylated nitrile butadiene rubber (XNBR) vulcanizate reinforced by organic filler. Polym Plast Technol Eng 50(13):1388–1392. doi:10.1080/03602559.2011.584242

    Article  CAS  Google Scholar 

  10. Mousa A, Banerjee S (2009) The effect of nano layered silicate on mechanical properties of polypropylene composites. Univ Sharjah J Pure Appl Sci 6(1):21–33

    Google Scholar 

  11. Mousa A, Heinrich G, Wagenknecht U (2008) The potential of O-MMT as a reinforcing filler for uncured and dynamically cured PVC/XNBR composites. J Macromol Sci Part A Pure Appl Chem 45:733–741

    Article  CAS  Google Scholar 

  12. Mousa A, Karger-Kocsis J (2001) Rheological and thermodynamic behavior of SBR/organoclay nanocomposites. Macromol Mater Eng 286:260–266

    Article  CAS  Google Scholar 

  13. Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mulhaupt R (2000) Melt compounding of different grades of polystyrene with organoclay. Part 2: rheological properties. Macromol Rapid Commun 21:57

    Article  CAS  Google Scholar 

  14. Mousa A, Heinrich G, Wagenknecht U (2013) The application of solid olive waste as reinforcement in carboxylated nitrile butadiene rubber/organo nano layered silicates composites. J Soild Waste Technol Manag 39:197–203

    Article  CAS  Google Scholar 

  15. Mousa A, Heinrich G, Simon F, Wagenknecht U, Stöckelhuber KW, Dweiri R (2012) Carboxylated nitrile butadiene rubber/hybrid filler composites. Mater Res 15(4):1–8

    Article  Google Scholar 

  16. Mousa A, Heinrich G, Wagenknecht U (2012) The effect of silane treated hybrid filler on the mechanical and thermal performance of carboxylated nitrile butadiene rubber (XNBR) composites. Int Polym Process 3:1–6. doi:10.3139/217.2522

    Google Scholar 

  17. Mousa A, Heinrich G, Wagenknecht U (2012) Rubber-wood composites from chemically modified olive husk powder and carboxylated nitrile butadiene rubber: cure characteristics, tensile behavior, and morphological studies. J Wood Chem Technol 32:82–92. doi:10.1080/02773813.2011.599469

    Article  CAS  Google Scholar 

  18. Mousa A, Heinrich G, Wagenknecht U, Gohs U (2012) Mechanical properties of electron beam treated carboxylated nitrile butadiene rubber (XNBR) composites reinforced by organic/inorganic hybrid filler. J Compos Mater 46(10):1151–1157

    Article  CAS  Google Scholar 

  19. Mousa A, Heinrich G (2012) The application of di-isocyanate modified agro-polymer as filler for XNBR/PA-12 thermoplastic elastomer composites. Macromol Sci Part A: Pure Appl Chem 49(5):385–396. doi:10.1080/10601325.2012.671758

    Article  CAS  Google Scholar 

  20. Mousa A, Heinrich G, Wagenknecht U (2014) Thermal properties of carboxylated nitrile rubber/nylon-12 composites-filled lignocellulose materials. J Thermoplast Compos Mater 27(2):167–17

    Google Scholar 

  21. Mousa A, Heinrich G (2012) The effect of microwave irradiation on the physical and morphological behavior of olive husk biomass and its application in XNBR. Vulcanizates Biomass Waste Valoriz 3:157–164. doi:10.1007/s12649-011-9106-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mousa, A., Heinrich, G., Wagenknecht, U. (2014). Bio-Based Fillers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_285-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_285-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics