Skip to main content

Aging Behavior of Elastomers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Elastomeric materials

Background

Elastomer materials are indispensable in the manufacture of ultra-dynamically stressed, temperature- and media-stable components – e.g., tires, drive components, engine mounts, couplings, vibration dampers, hoses, seals, etc., all of which enhance safety and comfort, specifically in the automotive sector. It is particularly important from an economic standpoint to maintain the material’s physicochemical properties – and thus their functional reliability – for the longest possible period of time (service life). The service life of elastomer components is determined and limited largely by aging processes. Over the course of time, mechanical dynamic load (fatigue), oxidation processes, temperature, exposure to UV light (photooxidation), and aggressive media lead to irreversible changes in the physical and chemical properties of an elastomer material, often resulting in premature functional failure of the component concerned [1, 2]. In the mixing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. DIN 50035; (2012) Terms and definitions used on ageing of materials – Polymeric Materials, BeuthVerlag GmbH 2012–09

    Google Scholar 

  2. International Union of Pure and Applied Chemistry (IUPAC). Macromolecule Division and Commission on Macromolecular Nomenclature: Definitions of Terms Relating to Degradation, Aging and Related Chemical Transformations of Polymers, Pure and Applied Chemistry, Vol. 68, No. 12, pp. 2013–2323

    Google Scholar 

  3. Scott G (1963) Antioxidants. Chem Ind 16:271

    Google Scholar 

  4. Scott G (1990) Mechanism of polymer degradation and stabilisation. Elsevier Applied Science, London/New York, p 170

    Google Scholar 

  5. Hoff A, Jacobsson S (1982) J Appl Sci 27:2539

    Article  CAS  Google Scholar 

  6. Scott G (1981) Developments in polymer stabilisation. Applied Science, London, p 145

    Google Scholar 

  7. Snijders EA, Boersma A, van Baarle B, Noordermeer J (2005) Polym Degrad Stabil 89:200

    Article  CAS  Google Scholar 

  8. Hoffmann W (1989) Kautschuktechnologie. Gentner Verlag pp. 308–310

    Google Scholar 

  9. Naskar K, Noordermeer JWM (2004) Kautschuk Gummi Kunstst 57:235

    CAS  Google Scholar 

  10. Coran AY (1994) Vulcanization. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber. Academic, San Diego, p 372

    Google Scholar 

  11. Bolland JL (1949) Quartly Rev Chem Soc 3:1–21

    Google Scholar 

  12. Norling PM (1963) Rubber Chem Technol 38:1198

    Article  Google Scholar 

  13. Keller RW (1985) Rubber Chem Technol 58:637

    Article  CAS  Google Scholar 

  14. Norling PM, Lee TCP, Tobolsky AV (1985) Rubber Chem Technol 38:1198

    Article  Google Scholar 

  15. Santoso M, Giese U, Schuster RH (2007) Rubber Chem Technol 81:762

    Article  Google Scholar 

  16. Santoso M, Giese U, Schuster RH (2007) Kautschuk Gummi Kunstst 60:192

    CAS  Google Scholar 

  17. Giese U, Homeier I, Torrejon Y (2013) Aging processes – mechanisms and quantitative characterization, TB: IRC 2013, Paris, 20–22 Mar 2013

    Google Scholar 

  18. Bender H, Campomizzi E (2001) Kautschuk Gummi Kunstst 54:14

    CAS  Google Scholar 

  19. Bhattacharjee S, Bhowmick AK, Avasthi BN (1991) Degr. Stab. 31 p. 71

    Google Scholar 

  20. Scott G (1985) Rubber Chem Technol 58:269

    Google Scholar 

  21. Modrow H, Zimmer R, Visel F, Hormes J (2000) Kautschuk Gummi Kunstst 53:328

    CAS  Google Scholar 

  22. Gillen KT, Clough RL, Wise J (1996) Prediction of elastomer lifetimes from accelerated thermal- aging experiments. In: Clough RL, Billingham NC, Gillen KT (eds) Advances in chemistry series. American Chemical Society, Washington, DC, p 557 ff

    Google Scholar 

  23. Rothert H, Kaliske M, Nasdala L (2005) Zusammenfassung und Ausblick. In: Entwicklung von Materialmodellen zur Alterung von Elastomerwerkstoffen unter besonderer Berücksichtigung des Sauerstoffeinflusses Fördernummer 5232848, DFG Gepris, p 99

    Google Scholar 

  24. Terill ER, Lewis JT (2010) Gummi Fasern Kunststoffe 63:647

    Google Scholar 

  25. Wise J, Gillen KT, Clough RL (1995) Polym Degrad Stab 49:403–418

    Article  CAS  Google Scholar 

  26. Ellwood KRJ, Baldwin J, Bauer DR (2006) Rubber Chem Technol 79:249–266

    Article  CAS  Google Scholar 

  27. Gillen KT, Bernstein R, Celina M (2005) Polym Degrad Stab 87:335

    Article  CAS  Google Scholar 

  28. Gillen KT, Berntein R, Derzon DK (2005) Polym Degrad Stab 87:57

    Article  CAS  Google Scholar 

  29. Lechner MD, Gehrke K, Nordmeier EH (1993) Makromolekulare Chemie. Birkhäuser Verlag, Berlin, p 476

    Google Scholar 

  30. Luo Y (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Google Scholar 

  31. Nordsiek KH, Wolpers J (1992) Kautsch Gummi Kunststoffe 45:791

    CAS  Google Scholar 

  32. Coran AY (1994) Vulcanization. In: Mark JE, Erman B, Eirich TR (eds) Science and technology of rubber. Academic, San Diego, p 339

    Google Scholar 

  33. McSweeny GP, Morrison NJ (1982) Rubber Chem Technol 56:337

    Article  Google Scholar 

  34. Morrison NJ, Porter M (1984) Rubber Chem Technol 57:63

    Article  CAS  Google Scholar 

  35. Buding H, Jeske W, Weidenhaupt H-J (2002) Kautschuk Gummi Kunststoffe 55:642

    CAS  Google Scholar 

  36. Hahn J, Palloch P, Walter E, Thielen N (2001) Rubber Chem Technol 74:779

    Article  CAS  Google Scholar 

  37. Ferradino AG (2003) Rubber Chem Technol 76:694

    Article  CAS  Google Scholar 

  38. Huntnink NM, Datta RN, Noordermeer JWM (2004) RCT 77:476

    Google Scholar 

  39. Engels H-W (1994) Kautschuk Gummi Kunstst 47:12

    CAS  Google Scholar 

  40. Brück D, Engels H-W (1991) Kautschuk Gummi Kunstst 44:1014

    Google Scholar 

  41. Navarro Torrejòn Y, Giese U (2012) Kautsch Gummi Kunstst 65:25

    Google Scholar 

  42. Giese U, Navarro Torrejòn Y, Santoso M (2012) Kautsch Gummi Kunstst 7–8:20

    Google Scholar 

  43. Santoso M, Navarro Torrejòn Y, Giese U, Schuster RH (2008) Kautsch Gummi Kunstst 61:306

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Giese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Giese, U. (2014). Aging Behavior of Elastomers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_284-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_284-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics