Skip to main content

Hydrocarbon-Oxidizing Bacteria

  • Reference work entry
The Prokaryotes

Abstract

Hydrocarbon-oxidizing bacteria have been isolated from a variety of terrestrial and aquatic environments, using both enrichment and direct plating techniques. Although bacteria able to grow on aliphatic and aromatic hydrocarbons are found in many genera, the genera Alcanivorax appear to be special because these bacteria are specialized for growth on hydrocarbons. The initial step in the bacterial degradation of hydrocarbons is the introduction of oxygen into the molecules by group-specific oxygenases. Since these oxygenases are membrane bound, the cell must come into direct contact with their water-insoluble substrate. Hydrocarbon-oxidizing bacteria have potential applications in bioremediation of oil pollution, enhanced oil recovery, production of surface-active agents, and in the use of hydrocarbons as substrates for industrial fermentation processes.

  1. 1.

    Microbial spoilage of petroleum products

  2. 2.

    Treatment of oil spills and disposal of petroleum wastes

  3. 3.

    Enhanced oil recovery

  4. 4.

    Production of surface-active agents

  5. 5.

    Hydrocarbons as substrates in industrial fermentation processes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Public Health Association (1995) Standard methods for the examination of water, sewage and industrial wastes. American Public Health Association, New York

    Google Scholar 

  • Antoniewski J, Schaefer R (1972) Researches sur les reactions des coenoses microbiennes de sols impregnes par des hydrocarbures. Modification de l’activite respiratoire. Ann Inst Pasteur 123:805–819

    CAS  Google Scholar 

  • Asperger O, Kleber HP (1991) Metabolism of alkanes y Acinetobacter. In: Towner KJ, Bergogne-Berezine E, Fewson CA (eds) The biology of Acinetobacter. Plenum Press, New York, pp 323–351

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    PubMed  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14:297–305

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM, Bartha R (1973a) Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol 7:535–541

    Article  Google Scholar 

  • Atlas RM, Bartha R (1973b) Abundance, distribution and oil biodegradation potential of microorganisms in Raritan Bay. Environ Pollut 4:291–300

    Article  Google Scholar 

  • Atlas RM, Schofield EA (1975) Petroleum biodegradation in the Arctic. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Impact on the use of microorganisms on the aquatic environment. Environmental Protection Agency, Corvallis, pp 183–198. EPA-660-3-75-001

    Google Scholar 

  • Atlas RM, Horowitz A, Busdosh M (1978) Prudhoe crude oil in Arctic marine ice, water and sediment eco-systems; degradation and interactions with microbial and benthic communities. J Fish Res Board Can 35:585–590

    Article  CAS  Google Scholar 

  • Austin B, Calomiris JJ, Walker JD, Colwell RL (1977a) Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl Environ Microbiol 34:60–68

    PubMed  CAS  Google Scholar 

  • Austin B, Colwell RR, Walker JD, Calomiris JJ (1977b) The application of numerical taxonomy to the study of petroleum degrading bacteria isolated from the aquatic environment. Dev Ind Microbiol 18:685–695

    Google Scholar 

  • Barabas G, Sorkhoh NA, Fardoon F, Radwan SS (1995) n-Alkane-utilization by oligocarbophilic actinomycete strains from oil-polluted Kuwaiti desert soil. Actinomycetol 9:13–18

    Article  Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    Article  PubMed  CAS  Google Scholar 

  • Beauchop T, Elsden SR (1960) The growth of organisms in relation to their energy supply. J Gen Microbiol 23:457–469

    Article  Google Scholar 

  • Bertrand JC, Dour JM, Azoulay E (1976) Metabolisme des hydrobarbures chez une bacterie marine. Biochemie 58:843–854

    Article  CAS  Google Scholar 

  • Bossert L, Bartha R (1984) The fate of petroleum in oil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473

    Google Scholar 

  • Buckley EN, Jones RB, Pfaender FF (1976) Characterization of microbial isolates from an estuarine eco-system: relationship of hydrocarbon utilization to ambient hydrocarbon concentration. Appl Environ Microbiol 32:232–237

    PubMed  CAS  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    PubMed  CAS  Google Scholar 

  • Byrom JA, Beastall S, Scotland S (1970) Bacterial degradation of crude oil. Mar Pollut Bull 1:25–26

    Article  Google Scholar 

  • Cappello S, Yakimov MM (2010) Alcanivorax. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  • Cerniglia CE (1984) Microbial transformation of aromatic hydrocarbons. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 95–128

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chakrabarty AM, Chou G, Gunsalas LC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci 70:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Champagnat A, Llewelyn DAB (1962) Protein from petroleum. New Sci 16:612–613

    Google Scholar 

  • Champagnat A, Verne C, Laine B, Filosa J (1963) Biosynthesis of protein-vitamin concentrates. Nature 197:13–14

    Article  CAS  Google Scholar 

  • Churchill SAJP (1999) Isolation and characterization of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    PubMed  CAS  Google Scholar 

  • Colwell RR, Walker JD, Nelson JD Jr (1973) Microbial ecology and the problem of petroleum degradation in Chesapeake Bay. In: Ahearn DG, Meyers SR (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 186–197. Publ. No. LSU-SG-73-91

    Google Scholar 

  • Cook WL, Massey JL, Ahearn DG (1973) The degradation of crude oil by yeasts and its effects on Lebistes reticulatis. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 252–297. Publ. No. LSU-SG-73-01

    Google Scholar 

  • Coty VF (1967) Atmospheric nitrogen fixation of hydrocarbon-oxidizing bacteria. Biotechnol Bioeng 9:25–32

    Article  CAS  Google Scholar 

  • Crow SA, Hood MA, Meyers SP (1975) Microbiological aspects of oil intrusion in southeastern Louisiana. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Impact of the use of microorganism on the aquatic environment. Environmental Protection Agency, Corvallis, pp 221–227. EPA-660-3-75-001

    Google Scholar 

  • Cundell AM, Traxler RW (1973a) The isolation and characterization of hydrocarbon utilizing bacteria from Chedabucto Bay, Nova Scotia. In: Proceedings of joint conference on prevention and control of oil spills. American Petroleum Institute, Washington, DC, pp 421–426

    Google Scholar 

  • Cundell AM, Traxler RW (1973b) Microbial degradation of petroleum at low temperature. Mar Pollut Bull 4:125–127

    Article  CAS  Google Scholar 

  • Cundell AM, Traxler RW (1976) Psychrophillic hydrocarbon degrading bacteria from Narragansett Bay, Rhode Island, USA. Mater Org 11:1–17

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Dibble JT, Bartha R (1976) Effect of iron on the biodegradation of petroleum in seawater. Appl Environ Microbiol 31:544–550

    PubMed  CAS  Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads: the ring-fission mechanism. Biochem J 95:819–831

    PubMed  CAS  Google Scholar 

  • Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of (methyl-14C)-and (methyl2H3)-methionine into 7-and 8-methyl-heptadecanes. Biochemistry 9:418–422

    Article  PubMed  CAS  Google Scholar 

  • Floodgate GD (1973) A threnody concerning the biodegradation of oil in natural waters. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 17–22. Publication No. LSU-SG-73-01

    Google Scholar 

  • Floodgate GD (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–398

    Google Scholar 

  • Foght JM, Gutnick DL, Westlake DWS (1989) Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol 55:36–42

    PubMed  CAS  Google Scholar 

  • Geiselbrecht AD, Herwig RP, Deming JW, Staley JT (1996) Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl Environ Microbiol 62:3344–3349

    PubMed  CAS  Google Scholar 

  • Genner C, Hill EC (1981) Fuels and oils. In: Rose AH (ed) Microbial biodeterioration. Academic, London, pp 260–306

    Google Scholar 

  • Gibson DT (1968) Microbial degradation of aromatic compounds. Science 161:1093–1097

    Article  CAS  Google Scholar 

  • Gibson DT (1971) Microbial degradation of hydrocarbons. In: Goldberg ED (ed) Physical and chemical sciences research report I. Dahlem workshop report on the nature of sea water, pp 667–696

    Google Scholar 

  • Gibson DT (1977) Biodegradation of aromatic petroleum hydrocarbons. In: Wolfe DA (ed) Fate of and effect of petroleum hydrocarbons in marine eco-systems and organisms. Pergamon Press, New York, pp 34–46

    Google Scholar 

  • Giger W, Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment: isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal Chem 46:1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Griffol M, Selifonov SA, Chapman PJ (1994) Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. Strain. Appl Environ Microbiol 60:2438–2449

    Google Scholar 

  • Gunkel W, Trekel HH (1967) Zur Methodik der quantitative Erfassung olabbauender Sakterien in verolten Sedimenten und Boden, Ol-Wassergemischen, Olen and Teerartigen Substanzen. Helgolander wiss Meeresunters 16:336–348

    Article  Google Scholar 

  • Gutnick DL, Rosenberg E (1977) Oil tankers and pollution: a microbiological approach. Ann Rev Microbiol 31:379–396

    Article  CAS  Google Scholar 

  • Haines JR, Wrenn BA, Holder EL, Strohmeier KL, Herrington RT, Venosa AD (1996) Measurement of hydrocarbon-degrading microbial populations by a 96-well plat most-probable-number procedure. J Ind Microbiol 16:36–41

    Article  PubMed  CAS  Google Scholar 

  • Hardwood JL, Russel NJ (1984) Lipids in plants and microbes. George Allen & Unwin, London, pp 110–111

    Book  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Article  Google Scholar 

  • Hitzman DO (1983) Petroleum microbiology and the history of its role in enhanced oil recovery. In: Donaldson ES, Clark SB (eds) Proceedings of 1982 intentional conference on the microbial enhancement of oil recovery technology transfer branch. Bartlesville Energy Technology Center, Bartlesville, pp 162–218

    Google Scholar 

  • Hollinger C, Zehnder AJ (1996) Anaerobic biodegradation of hydrocarbons. Curr Opin Biotechnol 3:326–330

    Article  Google Scholar 

  • Hood MA, Bishop WS Jr, Bishop FW, Meyers SP, Whelan T III (1975) Microbial indicators of oil-rich salt marsh sediments. Appl Microbiol 30:982–987

    PubMed  CAS  Google Scholar 

  • Horowitz A, Atlas RM (1977a) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653

    PubMed  CAS  Google Scholar 

  • Horowitz A, Atlas RM (1977b) Response of microorganism to an accidental gasoline spoilage in an Arctic freshwater ecosystem. Appl Environ Microbiol 33:1252–1258

    PubMed  CAS  Google Scholar 

  • Horowitz A, Gutnick D, Rosenberg E (1975) Sequential growth of bacteria on crude oil. Appl Microbiol 30:10–19

    PubMed  CAS  Google Scholar 

  • Hunt JM, Miller RJ, Whelan JL (1980) Formation of C6,-C7 hydrocarbons from bacterial degradation of naturally occurring terpenoids. Nature (London) 288:577–578

    Article  CAS  Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability. Agric Biol Chem 6:2233–2235

    Article  Google Scholar 

  • Jensen V (1975a) Decomposition of oil wastes in soil. In: Kilbertus G, Reisinger O, Mourey A, Cancela da Fonseca J (eds) Proceedings of the first international conference on biodegradation and humification 1974. University of Nancy, Nancy

    Google Scholar 

  • Jensen V (1975b) Bacterial flora of soil after application of oily waste. Oikios 26:152–158

    Article  Google Scholar 

  • Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of crude oil. Appl Microbiol 23:1082–1089

    PubMed  CAS  Google Scholar 

  • Jones JG, Edington WA (1968) An ecological survey of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 52:381–390

    Article  CAS  Google Scholar 

  • Juttner F (1976) Beta-Cyclocitral and alkanes in microcystis (Cyanophyceae). Zeitschrift fur Naturforschung 31c:491–495

    Google Scholar 

  • Kappeli O, Finnerty WR (1980) Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol Bioeng 22:495–503

    Article  Google Scholar 

  • Kincannon CB (1972) Oily waste disposal by soil cultivation process. Government Printing Office, Washington, DC. EPA Publ. No. R2-72-110

    Google Scholar 

  • Kirchmann H, Ewnetu W (1998) Biodegradation of petroleum-based oil wastes through composting. Biodegradation 9:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara H, Nagao L, Kauno L, Yano L (1982) Phenanthrene-degrading enzyme phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461

    PubMed  CAS  Google Scholar 

  • Knezevich V, Koren O, Ron EZ, Rosenberg E (2006) Petroleum bioremediation in seawater using guano as the fertilizer. Bioremediat J 10:83–91

    Article  CAS  Google Scholar 

  • Kolattukudy PE, Buckner JS, Brown L (1972) Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea. Biochem Biophys Res Commun 47:1306–1313

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522

    PubMed  CAS  Google Scholar 

  • Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61:145–151

    PubMed  CAS  Google Scholar 

  • Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1997) Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol 63:2660–2664

    PubMed  CAS  Google Scholar 

  • Markovetz AJ (1971) Subterminal oxidation of aliphatic hydrocarbons by microorganism. CRC Crit Rev Microbiol 1:225–238

    Article  CAS  Google Scholar 

  • McKee JE, Laverty FB, Hertel RM (1972) Gasoline in groundwater. J Water Pollut Contr Fed 44:293–302

    CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988) Degradation of polycyclic aromatic compounds under various redox conditions in soil-water system. Appl Environ Microbiol 54(1):1182–1187

    PubMed  CAS  Google Scholar 

  • Mikkelson JD, von Wettstein-Knowles P (1978) Biosynthesis of beta-diketones and hydrocarbons in barley spike epicuticular wax. Arch Biochem Biophys 188:172–181

    Article  Google Scholar 

  • Miller RM, Bartha R (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55:269–274

    PubMed  CAS  Google Scholar 

  • Mimura A, Takeda I, Wakasa R (1973) Some characteristic phenomena of oxygen transfer in hydrocarbon fermentation. Biotechnol Bioeng Symp (4):467–484. Wiley, New York

    Google Scholar 

  • Mironov OC (1970) Role of microorganism growing on oil in the self purification and indication of oil pollution in the sea. Oceanology 10:650–656

    Google Scholar 

  • Mironov OC, Lebed AA (1972) Hydrocarbon oxidizing bacteria in the North Atlantic. Hydrobiol J 8:74

    Google Scholar 

  • Moses V, Springham DG (1982) Bacteria and the enhancement of oil recovery. Applied Science, London

    Google Scholar 

  • Mueller RF, Nielsen PH (1996) Characterization of thermophilic consortia from two souring oil reservoirs. Appl Environ Microbiol 62:3083–3087

    PubMed  CAS  Google Scholar 

  • Mulkins-Phillips GJ, Stewart JE (1974a) Effect of environmental parameters on bacterial degradation of Bunker C. oil, crude oils, and hydrocarbons. Appl Microbiol 28:915–922

    PubMed  CAS  Google Scholar 

  • Mulkins-Phillips GJ, Stewart JE (1974b) Distribution of hydrocarbon utilizing bacteria in north western Atlantic waters and coastal sediments. Can J Microbiol 20:955–962

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T, Hisatsuka K, Minoda Y (1981) Effect of hydrocarbon emulsification on growth and respiration of microorganism in hydrocarbon media. J Ferm Technol 59:415–418

    CAS  Google Scholar 

  • Nieder M, Shapiro J (1975) Physiological function of Pseudomonas putida PpG6 (Pseudomonas oleovarans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacterial 122:93–98

    CAS  Google Scholar 

  • Odu CTI (1978) Fermentation characteristics and biochemical reactions of some organisms isolated from oil-polluted soils. Environ Pollut 15:271–276

    Article  CAS  Google Scholar 

  • Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  • Perry JJ (1977) Microbial metabolism of cyclic hydrocarbons by microorganisms isolated from soil. Can J Microbiol 14:403–407

    Article  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes, R61-98. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–67

    Google Scholar 

  • Pirnik MP (1977) Microbial oxidation of methyl branched alkanes. CRC Crit Rev Microbiol 5:413–422

    Article  PubMed  CAS  Google Scholar 

  • Powlowski J, Sealy J, Shingler V, Cadieux E (1997) On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. CF600. J Biol Chem 272:945–951

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdel F (1999) Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the beta-subclass of Proteobacteria. Environ Microbiol 1:145–157

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak A, Geibdorfer W, Hillen W (1998) Expression of alkane hydroxylase from Acinetobacter sp. Strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180:5822–5827

    PubMed  CAS  Google Scholar 

  • Raymond RL, Hudson JO, Jamison VW (1976) Oil degradation in soil. Appl Environ Microbiol 31:522–535

    PubMed  CAS  Google Scholar 

  • Reisfeld A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol 24:363–368

    PubMed  CAS  Google Scholar 

  • Robertson B, Arhelger S, Kinney PJ, Button DL (1973) Hydrocarbon degradation in Alaskan waters. In: AhearnDO, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 171–184. Publication No. LSU-SG-73-001

    Google Scholar 

  • Rogers MR, Kapian AM (1968) Screening of prospective biocides for hydrocarbon fuels. Dev Ind Microbiol 9:448–476

    Google Scholar 

  • Rosenberg E (1986) Microbial surfactants. CRC Crit Rev Biotechnol 3:109–132

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Rosenberg E (1985) Bacterial adherence at the hydrocarbon-water interface. Oil Petrochem Pollut 2:155–162

    Article  CAS  Google Scholar 

  • Rosenberg M, Bayer EA, Delaria J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Kaplan N, Pines O, Rosenberg M, Gutnick D (1983) Capsular polysaccharides interfere with adherence of Acinetobacter. FEMS Microbiot Lett 17:157–161

    Article  CAS  Google Scholar 

  • Rosenberg E, Brown DR, Demain AL (1985) The influence of gramicidin S on hydrophobicity of germinating Bacillus brevis spores. Arch Microbiol 142:51–54

    Article  CAS  Google Scholar 

  • Rosenberg E, Rosenberg M, Shoham Y, Kaplan N, Sar N (1989) Adhesion and desorption during the growth of Acinetobacter calcoaceticus on hydrocarbons. In: Cohen Y, Rosenberg E (eds) Microbial mats. ASM, Washington, DC, pp 218–226

    Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Taube R, Adler E, Ron E (1992) Petroleum bioremediation—a multiphase problem. Biodegradation 3:337–350

    Article  CAS  Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld WD (1947) Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria. J Bacteriol 54:664–665

    CAS  Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria. Nature (London) 372:455–458

    Article  CAS  Google Scholar 

  • Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Schocken MJ, Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbon acenaphthalene. Appl Environ Microbiol 48:10–16

    PubMed  CAS  Google Scholar 

  • Senez JC, Azoulay E (1961) Dehydrogenation of d’hydrocarbures parafliniques par leis suspensions non-proliferants et les extracts de Pseudomonas aeruginosa. Biochimica et Biophysical Acta 47:307–316

    Article  CAS  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37

    Article  PubMed  CAS  Google Scholar 

  • Singer ME, Finnerty WL (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 1–60

    Google Scholar 

  • Soli G (1973) Marine hydrocarbonoclastic bacteria: types and range of oil degradation. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 141–146. Publ. No. UU-SG-73-001

    Google Scholar 

  • Song H-G, Bartha R (1990) Effects of jet fuel spills on the microbial community of soil. Appl Environ Microbiol 56:646–651

    PubMed  CAS  Google Scholar 

  • Stevenson JJ (1966) Lipids in soil. J Am Oil Chem Soc 43:203–210

    Article  CAS  Google Scholar 

  • Thibault SL, Anderson M, Frankenberger WT Jr (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62:283–287

    PubMed  CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    PubMed  CAS  Google Scholar 

  • Vestal R, Cooney JJ, Crow S, Berger J (1984) The effects of hydrocarbons on aquatic microorganisms. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 475–506

    Google Scholar 

  • Walker JD, Colwell RR (1974) Microbial degradation of model petroleum at low temperatures. Microbiol Ecol 1:63–95

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR (1975) Factors affecting the enumeration and isolation of Actinomyces from Chesapeake Bay and south eastern Atlantic Ocean sediments. Mar Biol 30:193–201

    Article  Google Scholar 

  • Walker JD, Colwell RR (1976a) Measuring potential activity of hydrocarbon degrading bacteria. Appl Environ Microbiol 31:189–197

    PubMed  CAS  Google Scholar 

  • Walker JD, Colwell RR (1976b) Enumeration of petroleum-degrading microorganism. Appl Environ Microbiol 31:195–207

    Google Scholar 

  • Walker JD, Seesman PA, Herbert TL, Colwell RR (1976) Petroleum hydrocarbons: degradation and growth potential of deep-sea sediment bacteria. Environ Pollut 10:89–99

    Article  CAS  Google Scholar 

  • Ward DM, Brock TD (1976) Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl Environ Microbiol 31:764–772

    PubMed  CAS  Google Scholar 

  • Westlake DWS (1984) Heavy crude oils and oil shales: tertiary recovery of petroleum from oil-bearing formations. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 537–552

    Google Scholar 

  • Westlake DWS, Jobson A, Philippe R, Cooke FD (1974) Biodegradability and crude oil composition. Can J Microbiol 20:915–928

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    PubMed  CAS  Google Scholar 

  • Winters L, Parker PL, Van Baalen C (1969) Hydrocarbons of the blue-green algae: geochemical significance. Science 163:467–468

    Article  PubMed  CAS  Google Scholar 

  • Wyndham RC, Costenon JW (1981) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the Athabasca oil sands deposit. Appl Environ Microbiol 41:783–790

    PubMed  CAS  Google Scholar 

  • Zhang W, Bouwer EJ (1997) Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms. Biodegradation 8:167–175

    Article  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    PubMed  CAS  Google Scholar 

  • ZoBell CE (1964) The occurrence, effects and fate of oil polluting the sea. Adv Water Pollut Res 3:85–118

    Google Scholar 

  • ZoBell CE, Prokop JF (1966) Microbial oxidation of mineral oils in Barataria Bay bottom deposits. Zeitschrifl fur Allgemeine Mikrobiologie 6:143–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rosenberg, E. (2013). Hydrocarbon-Oxidizing Bacteria. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_66

Download citation

Publish with us

Policies and ethics