Skip to main content

Bacterial Behavior

  • Reference work entry
The Prokaryotes

Abstract

A wide variety of bacteria have the ability to change their pattern of swimming behavior in response to changes in environmental conditions and thus move toward favorable growth conditions. It has become apparent that the response to such diverse stimuli as light, temperature, and concentrations of nutrients is coordinated through the same network of cytoplasmic proteins and that the core components of this network are conserved among bacterial species. Here we outline the mechanism through which swimming is effected, the range of receptor proteins used to detect external signals, and how these signals are coordinated through cytoplasmic proteins to elicit a change in swimming behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler J (1969) Chemoreceptors in bacteria. Science 166:1588

    PubMed  CAS  Google Scholar 

  • Adler J, Epstein W (1974) Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 71:2895–2899

    PubMed  CAS  Google Scholar 

  • Airola MV, Watts KJ, Bilwes AM, Crane BR (2010) Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure 18:436–448

    PubMed  CAS  Google Scholar 

  • Alexander RP, Zhulin IB (2007) Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci USA 104:2885–2890

    PubMed  CAS  Google Scholar 

  • Alley MRK, Maddock JR, Shapiro L (1992) Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–836

    PubMed  CAS  Google Scholar 

  • Allison C, Coleman N, Jones PL, Hughes C (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740–4746

    PubMed  CAS  Google Scholar 

  • Amin DN, Hazelbauer GL (2010) The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling. J Bacteriol 192:1193–1200

    PubMed  CAS  Google Scholar 

  • Amin DN, Taylor BL, Johnson MS (2006) Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli. J Bacteriol 188:894–901

    PubMed  CAS  Google Scholar 

  • Antunez-Lamas M, Cabrera-Ordonez E, Lopez-Solanilla E, Raposo R, Trelles-Salazar O, Rodriguez-Moreno A, Rodriguez-Palenzuela P (2009) Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology-Sgm 155:434–442

    CAS  Google Scholar 

  • Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116

    PubMed  CAS  Google Scholar 

  • Arkhipov A, Freddolino PL, Imada K, Namba K, Schulten K (2006) Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys J 91:4589–4597

    PubMed  CAS  Google Scholar 

  • Armitage JP (1997) Behavioural responses of bacteria to light and oxygen. Arch Microbiol 168:249–261

    PubMed  CAS  Google Scholar 

  • Armitage J (2006) Bacterial behavior. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 102–139

    Google Scholar 

  • Armitage JP, Macnab RM (1987) Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J Bacteriol 169:514–518

    PubMed  CAS  Google Scholar 

  • Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM (1999) Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 181:4825–4833

    PubMed  CAS  Google Scholar 

  • Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110

    PubMed  CAS  Google Scholar 

  • Asai Y, Kawagishi I, Sockett ER, Homma M (2000) Hybrid motor with the H + and Na + -driven components can rotate of vibrio polar flagella using sodium ions. J Bacteriol 181:6332–6338

    Google Scholar 

  • Atsumi T, McCartert L, Imae Y (1992) Polar and lateral flagellar motors of marine vibrio are driven by different ion-motive forces. Nature 355:182–184

    PubMed  CAS  Google Scholar 

  • Barak R, Eisenbach M (1992) Correlation between phosphorylation of the chemotaxis protein-chey and its activity at the flagellar motor. Biochemistry 31:1821–1826

    PubMed  CAS  Google Scholar 

  • Barak R, Eisenbach M (2001) Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol Microbiol 40:731–743

    PubMed  CAS  Google Scholar 

  • Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004) Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol 342:383–401

    PubMed  CAS  Google Scholar 

  • Barak R, Yan J, Shainskaya A, Eisenbach M (2006) The chemotaxis response regulator CheY can catalyze its own acetylation. J Mol Biol 359:251–265

    PubMed  CAS  Google Scholar 

  • Bardy S, Ng SYM, Jarrell KF (2004) Recent advances in the structure and assembly of the archaeal flagellum. J Mol Microbiol Biotechnol 7:41–51

    PubMed  CAS  Google Scholar 

  • Barnakov AN, Barnakova LA, Hazelbauer GL (1998) Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli: similar kinase activation but different methyl-accepting activities. J Bacteriol 180:6713–6718

    PubMed  CAS  Google Scholar 

  • Beel BD, Hazelbauer GL (2001) Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain. Mol Microbiol 40:824–834

    PubMed  CAS  Google Scholar 

  • Berg HC (1976) How spirochetes may swim. J Theor Biol 56:269–273

    PubMed  CAS  Google Scholar 

  • Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    PubMed  CAS  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    PubMed  CAS  Google Scholar 

  • Berg HC, Turner L (1995) Cells of Escherichia coli swim either end forward. Proc Natl Acad Sci USA 92:477–479

    PubMed  CAS  Google Scholar 

  • Berry RM, Armitage JP (2000) Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity. Biophys J 78:1207–1215

    PubMed  CAS  Google Scholar 

  • Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR (2010) Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 49:3824–3841

    PubMed  CAS  Google Scholar 

  • Bibikov SI, Biran R, Rudd KE, Parkinson JS (1997) A signal transducer for aerotaxis in Escherichia coli. J Bacteriol 179:4075–4079

    PubMed  CAS  Google Scholar 

  • Bibikov SI, Barnes LA, Gitin Y, Parkinson JS (2000) Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci USA 97:5830–5835

    PubMed  CAS  Google Scholar 

  • Bibikov SI, Miller AC, Gosink KK, Parkinson JS (2004) Methylation-independent aerotaxis mediated by the Escherichia coli aer protein. J Bacteriol 186:3730–3737

    PubMed  CAS  Google Scholar 

  • Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141

    PubMed  CAS  Google Scholar 

  • Bischoff DS, Ordal GW (1992) Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol Microbiol 6:23–28

    PubMed  CAS  Google Scholar 

  • Blair DF, Berg HC (1990) The Mota protein of Escherichia coli Is a proton-conducting component of the flagellar motor. Cell 60:439–449

    PubMed  CAS  Google Scholar 

  • Blair DF, Berg HC (1991) Mutations in the Mota protein of Escherichia coli reveal domains critical for proton conduction. J Mol Bio 221:1433–1442

    CAS  Google Scholar 

  • Blat Y, Eisenbach M (1994) Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33:902–906

    PubMed  CAS  Google Scholar 

  • Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:470–472

    PubMed  CAS  Google Scholar 

  • Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis. Cell 31:215–226

    PubMed  CAS  Google Scholar 

  • Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–518

    PubMed  CAS  Google Scholar 

  • Block SM, Blair DF, Berg HC (1991) Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12:492–496

    PubMed  CAS  Google Scholar 

  • Boukhvalova M, VanBruggen R, Stewart RC (2002) CheA kinase and chemoreceptor interaction surfaces on CheW. J Biol Chem 277:23596–23603

    PubMed  CAS  Google Scholar 

  • Bourret RB, Davagnino J, Simon MI (1993) The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J Bacteriol 175:2097–2101

    PubMed  CAS  Google Scholar 

  • Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF (2003) Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45

    Google Scholar 

  • Bren A, Eisenbach M (1998) The N-terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator CheY. J Mol Biol 278:507–514

    PubMed  CAS  Google Scholar 

  • Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ (2008) Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 69:30–41

    PubMed  CAS  Google Scholar 

  • Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Muller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci USA 106:17181–17186

    PubMed  CAS  Google Scholar 

  • Brown DA, Berg HC (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci USA 71:1388–1392

    PubMed  CAS  Google Scholar 

  • Brown MT, Delalez NJ, Armitage JP (2011) Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Curr Opin Microbiol 14:734–740

    PubMed  CAS  Google Scholar 

  • Campbell AJ, Watts KJ, Johnson MS, Taylor BL (2010) Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor. Aer Mol Microiol 77:575–586

    CAS  Google Scholar 

  • Cantwell BJ, Manson MD (2009) Protein domains and residues involved in the CheZ/CheAS interaction. J Bacteriol 191:5838–5841

    PubMed  CAS  Google Scholar 

  • Chadsey MS, Karlinsey JE, Hughes KT (1998) The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136

    PubMed  CAS  Google Scholar 

  • Chao X, Muff TJ, Park SY, Zhang S, Pollard AM, Ordal GW, Bilwes AM, Crane BR (2006) A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124:561–571

    PubMed  CAS  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    PubMed  CAS  Google Scholar 

  • Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Muller A, Dobro MJ, Jensen GJ (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981

    PubMed  CAS  Google Scholar 

  • Chervitz SA, Falke JJ (1995) Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor. J Biol Chem 270:24043–24053

    PubMed  CAS  Google Scholar 

  • Chevance FFV, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Micro 6:455–465

    CAS  Google Scholar 

  • Cho HS, Lee SY, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG (2000) NMR structure of activated CheY. J Mol Biol 297:543–551

    PubMed  CAS  Google Scholar 

  • Choudhary M, Fu YX, Mackenzie C, Kaplan S (2004) DNA sequence duplication in Rhodobacter sphaeroides 2.4.1: evidence of an ancient partnership between chromosomes I and II. J Bacteriol 186:2019–2027

    PubMed  CAS  Google Scholar 

  • Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278

    PubMed  CAS  Google Scholar 

  • Cohen-Ben-Lulu GN, Francis NR, Shimoni E, Noy D, Davidov Y, Prasad K, Sagi Y, Cecchini G, Johnstone RM, Eisenbach M (2008) The bacterial flagellar switch complex is getting more complex. EMBO J 27:1134–1144

    PubMed  CAS  Google Scholar 

  • Conley MP, Wolfe AJ, Blair DF, Berg HC (1989) Both chea and chew are required for reconstitution of chemotactic signaling in Escherichia coli. J Bacteriol 171:5190–5193

    PubMed  CAS  Google Scholar 

  • Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 188:2656–2665

    PubMed  CAS  Google Scholar 

  • De Mot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microiol 12:333–334

    Google Scholar 

  • Ditty JL, Harwood CS (1999) Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12 membrane-spanning regions. J Bacteriol 181:5068–5074

    PubMed  CAS  Google Scholar 

  • Djordjevic S, Stock AM (1998) Chemotaxis receptor recognition by protein methyltransferase CheR. Nat Struct Biol 5:446–450

    PubMed  CAS  Google Scholar 

  • Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415–424

    PubMed  CAS  Google Scholar 

  • Donato GM, Kawula TH (1998) Enhanced binding of altered H-NS protein to flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility in Escherichia coli. J Biol Chem 273:24030–24036

    PubMed  CAS  Google Scholar 

  • Draheim RR, Bormans AF, Lai RZ, Manson MD (2006) Tuning a bacterial chemoreceptor with protein−membrane interactions. Biochemistry 45:14655–14664

    PubMed  CAS  Google Scholar 

  • Dubbs JM, Bird TH, Bauer CE, Tabita FR (2000) Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbb(I) promoter-operator region. J Biol Chem 275:19224–19230

    PubMed  CAS  Google Scholar 

  • Duke TAJ, Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA 96:10104–10108

    PubMed  CAS  Google Scholar 

  • Edwards JC, Johnson MS, Taylor BL (2006) Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 62:823–837

    PubMed  CAS  Google Scholar 

  • Ely B, Ely TW, Crymes WB, Minnich SA (2000) A family of six flagellin genes contributes to the caulobacter crescentus flagellar filament. J Bacteriol 182:5001–5004

    PubMed  CAS  Google Scholar 

  • Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V, Wingreen NS (2008) Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 4:211

    PubMed  Google Scholar 

  • Engelmann TW (1883) Bacterium photometricum. Ein beitrag zur vergleichenden physiologie des Licht- und Farensinnes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 95–124

    Google Scholar 

  • Eraso JM, Kaplan S (2000) From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39:2052–2062

    PubMed  CAS  Google Scholar 

  • Erbse AH, Berlinberg AJ, Cheung CY, Leung WY, Falke JJ (2011) OS-FRET: a new one-sample method for improved FRET measurements. Biochemistry 50:451–457

    PubMed  CAS  Google Scholar 

  • Fahrner KA, Block SM, Krishnaswamy S, Parkinson JS, Berg HC (1994) A mutant hook-associated protein (Hap3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. J Mol Biol 238:173–186

    PubMed  CAS  Google Scholar 

  • Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265

    PubMed  CAS  Google Scholar 

  • Fedorov OV, Khechinashvili NN, Kamiya R, Asakura S (1984) Multidomain of flagellin. J Mol Biol 175:83–87

    PubMed  CAS  Google Scholar 

  • Feng XH, Lilly AA, Hazelbauer GL (1999) Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site. J Bacteriol 181:3164–3171

    PubMed  CAS  Google Scholar 

  • Francis NR, Irikura VM, Yamaguchi S, DeRosier DJ, Macnab RM (1992) Localization of the Salmonella-Typhimurium flagellar switch protein flig to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci USA 89:6304–6308

    PubMed  CAS  Google Scholar 

  • Francke C, Kormelink TG, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ (2011) Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior. Bmc Genomics 12:385

    Google Scholar 

  • Fredrick KL, Helmann JD (1994) Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735

    PubMed  CAS  Google Scholar 

  • Fu R, Wall JD, Voordouw G (1994) DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol 176:344–350

    PubMed  CAS  Google Scholar 

  • Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microiol 71:825–835

    CAS  Google Scholar 

  • Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Comm 394:130–135

    PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Phler A, Abola P, Ampe DRF, Barloy-Hubler DRF, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Drano SP, Federspiel NA, Fisher RF, Gloux SP, Godrie TRS, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure VR, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, VorÂlter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    PubMed  CAS  Google Scholar 

  • Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH (2008) Divergence of quaternary structures among bacterial flagellar filaments. Science 320:382–385

    PubMed  CAS  Google Scholar 

  • Gardina PJ, Bormans AF, Hawkins MA, Meeker JW, Manson MD (1997) Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor. Mol Microiol 23:1181–1191

    CAS  Google Scholar 

  • Gardina PJ, Bormans AF, Manson MD (1998) A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli. Mol Microiol 29:1147–1154

    CAS  Google Scholar 

  • Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Ordal GW (1998) Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J Bacteriol 180:4475–4480

    PubMed  CAS  Google Scholar 

  • Garza AG, Harrishaller LW, Stoebner RA, Manson MD (1995) Motility protein interactions in the bacterial flagellar motor. Proc Natl Acad Sci USA 92:1970–1974

    PubMed  CAS  Google Scholar 

  • Gauden DE, Armitage JP (1995) Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol 177:5853–5859

    PubMed  CAS  Google Scholar 

  • Gegner JA, Graham DR, Roth AF, Dahlquist FW (1992) Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975–982

    PubMed  CAS  Google Scholar 

  • Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W (1993) Ultrastructure and biochemical-studies of the flagellar sheath of Helicobacter-pylori. J Med Micro 38:371–377

    CAS  Google Scholar 

  • Goldman JP, Levin MD, Bray D (2009) Signal amplification in a lattice of coupled protein kinases. Mol Biosyst 5:1853–1859

    PubMed  CAS  Google Scholar 

  • Goy MF, Springer MS, Adler J (1977) Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc Natl Acad Sci USA 74:4964–4968

    PubMed  CAS  Google Scholar 

  • Goy MF, Springer MS, Adler J (1978) Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 15:1231–1240

    PubMed  CAS  Google Scholar 

  • Greek M, Platzer J, Sourjik V, Schmitt R (1995) Analysis of a chemotaxis operon in Rhizobium meliloti. Mol Microbiol 15:989–1000

    Google Scholar 

  • Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:e1000137

    PubMed  Google Scholar 

  • Grishanin RN, Gauden DE, Armitage JP (1997) Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J Bacteriol 179:24–30

    PubMed  CAS  Google Scholar 

  • Griswold IJ, Dahlquist FW (2002) The dynamic behavior of CheW from Thermotoga maritima in solution, as determined by nuclear magnetic resonance: implications for potential protein-protein interaction sites. Biophys Chem 101:359–373

    PubMed  Google Scholar 

  • Griswold IJ, Zhou HJ, Matison M, Swanson RV, McIntosh LP, Simon MI, Dahlquist FW (2002) The solution structure and interactions of CheW from Thermotoga maritima. Nat Struct Biol 9:121–125

    PubMed  CAS  Google Scholar 

  • Grubl G, Vogler AP, Lengeler JW (1990) Involvement of the histidine protein (Hpr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12. J Bacteriol 172:5871–5876

    PubMed  CAS  Google Scholar 

  • Halkides CJ, McEvoy MM, Casper E, Matsumura P, Volz K, Dahlquist FW (2000) The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry 39:5280–5286

    PubMed  CAS  Google Scholar 

  • Hall BA, Armitage JP, Sansom MSP (2011) Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling. Plos Comput Biol 7:e1002204

    Google Scholar 

  • Hao S, Hamel D, Zhou H, Dahlquist FW (2009) Structural basis for the localization of the chemotaxis phosphatase CheZ by CheAS. J Bacteriol 191:5842–5844

    PubMed  CAS  Google Scholar 

  • Harighi B (2009) Genetic evidence for CheB- and CheR-dependent chemotaxis system in A. tumefaciens toward acetosyringone. Microbiol Res 164:634–641

    PubMed  CAS  Google Scholar 

  • Harrison DM, Skidmore J, Armitage JP, Maddock JR (1999) Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides. Mol Microbiol 31:885–892

    PubMed  CAS  Google Scholar 

  • Harshey RM (1994) Bees aren't the only ones – swarming in gram-negative bacteria. Mol Microiol 13:389–394

    CAS  Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    PubMed  CAS  Google Scholar 

  • Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella-Typhimurium– Surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635

    PubMed  CAS  Google Scholar 

  • Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE (1994) Identification of the Pcarkf gene-cluster from Pseudomonas-Putida – involvement in chemotaxis, biodegradation, and transport of 4-Hydroxybenzoate. J Bacteriol 176:6479–6488

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL, Lai WC (2010) Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13:124–132

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    PubMed  CAS  Google Scholar 

  • Hess JF, Oosawa K, Kaplan N, Simon MI (1988) Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:79–87

    PubMed  CAS  Google Scholar 

  • Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160

    PubMed  CAS  Google Scholar 

  • Hou SB, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam M (2000) Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540–544

    PubMed  CAS  Google Scholar 

  • Hwang W, Lee KE, Lee JK, Park BC, Kim KS (2008) Genes of Rhodobacter sphaeroides 2.4.1 regulated by innate quorum-sensing signal, 7,8-cis-N-(tetradecenoyl) homoserine lactone. J Microbiol Biotech 18:219–227

    CAS  Google Scholar 

  • Iino T (1969) Polarity of flagellar growth in Salmonella. J Gen Microbiol 56:227

    PubMed  CAS  Google Scholar 

  • Ikebe T, Iyoda S, Kutsukake K (1999) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183

    PubMed  CAS  Google Scholar 

  • Imada K, Minamino T, Tahara A, Namba K (2007) Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci USA 104:485–490

    PubMed  CAS  Google Scholar 

  • Jahreis K, Morrison TB, Garzon A, Parkinson JS (2004) Chemotactic signaling by an Escherichia coli CheA mutant that lacks the binding domain for phosphoacceptor partners. J Bacteriol 186:2664–2672

    PubMed  CAS  Google Scholar 

  • Jeziore-Sassoon Y, Hamblin PA, Bootle WC, Poole PS, Armitage JP (1998) Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. Microbiology 144:229–239

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Gest H, Bauer CE (1997) Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J Bacteriol 179:5720–5727

    PubMed  CAS  Google Scholar 

  • Jiang Z, Rushing BG, Bai Y, Gest H, Bauer CE (1998) Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180:1248–1255

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–409

    PubMed  CAS  Google Scholar 

  • Jones BV, Young R, Mahenthiralingam E, Stickler DJ (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72:3941–3950

    PubMed  CAS  Google Scholar 

  • Kaiser GE, Doetsch RN (1975) Enhanced translational motion of Leptospira in viscous environments. Nature 255:656–657

    PubMed  CAS  Google Scholar 

  • Karatan E, Saulmon MM, Bunn MW, Ordal GW (2001) Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626

    PubMed  CAS  Google Scholar 

  • Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT (2000) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microiol 37:1220–1231

    CAS  Google Scholar 

  • Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microiol 20:693–699

    CAS  Google Scholar 

  • Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644

    PubMed  CAS  Google Scholar 

  • Kehry MR, Dahlquist FW (1982) The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I. J Biol Chem 257:10378–10386

    PubMed  CAS  Google Scholar 

  • Kehry MR, Bond MW, Hunkapiller MW, Dahlquist FW (1983) Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc Natl Acad Sci USA 80:3599–3603

    PubMed  CAS  Google Scholar 

  • Kentner D, Thiem S, Hildenbeutel M, Sourjik V (2006) Determinants of chemoreceptor cluster formation in Escherichia coli. Mol Microbiol 61:407–417

    PubMed  CAS  Google Scholar 

  • Khan S, Macnab RM (1980) The steady-state counterclockwise-clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. J Mol Biol 138:563–597

    PubMed  CAS  Google Scholar 

  • Kho DH, Jang JH, Kim HS, Kim KS, Lee JK (2003) Quorum sensing of Rhodobacter sphaeroides negatively regulates cellular poly-beta-hydroxybutyrate content under aerobic growth conditions. J Microbiol Biotech 13:477–481

    CAS  Google Scholar 

  • Khursigara CM, Wu X, Subramaniam S (2008) Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. J Bacteriol 190:6805–6810

    PubMed  CAS  Google Scholar 

  • Kim KK, Yokota H, Kim SH (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792

    PubMed  CAS  Google Scholar 

  • Kirby JR, Saulmon MM, Kristich CJ, Ordal GW (1999) CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis. J Biol Chem 274:11092–11100

    PubMed  CAS  Google Scholar 

  • Kirkpatrick CL, Viollier PH (2012) Decoding Caulobacter development. FEMS Microbiol Rev 36:193–205

    PubMed  CAS  Google Scholar 

  • Kitao A, Yonekura K, Maki-Yonekura S, Samatey FA, Imada K, Namba K, Go N (2006) Switch interactions control energy frustration and multiple flagellar filament structures. Proc Natl Acad Sci USA 103:4894–4899

    PubMed  CAS  Google Scholar 

  • Ko M, Park C (2000) Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382

    PubMed  CAS  Google Scholar 

  • Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255

    PubMed  CAS  Google Scholar 

  • Kort R, Crielaard W, Spudich JL, Hellingwerf KJ (2000) Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 182:3017–3021

    PubMed  CAS  Google Scholar 

  • Kreutel S, Kuhn A, Kiefer D (2010) The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway. Bmc Microbiol 10:281

    Google Scholar 

  • Kristich CJ, Ordal GW (2002) Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J Biol Chem 277:25356–25362

    PubMed  CAS  Google Scholar 

  • Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa S (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605

    PubMed  CAS  Google Scholar 

  • Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747

    PubMed  CAS  Google Scholar 

  • Kutsukake K, Nakashima H, Tominaga A, Abo T (2006) Two DNA invertases contribute to flagellar phase variation in Salmonella enterica Serovar Typhimurium Strain LT2. J Bacteriol 188:950–957

    PubMed  CAS  Google Scholar 

  • Laszlo DJ, Taylor BL (1981) Aerotaxis in Salmonella-Typhimurium – role of electron-transport. J Bacteriol 145:990–1001

    PubMed  CAS  Google Scholar 

  • Laszlo DJ, Fandrich BL, Sivaram A, Chance B, Taylor BL (1984) Cytochrome-O as a terminal oxidase and receptor for aerotaxis in Salmonella-Typhimurium. J Bacteriol 159:663–667

    PubMed  CAS  Google Scholar 

  • Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    PubMed  CAS  Google Scholar 

  • Lee AG, Fitzsimons JTR (1976) Motility in normal and filamentous forms of Rhodospirillum-rubrum. J Gen Microbiol 93:346–354

    PubMed  CAS  Google Scholar 

  • Lee SY, Cho H, Pelton JG, Yan D, Berry EA, Wemmer DE (2001) Crystal structure of activated CheY. J Biol Chem 276:16425–16431

    PubMed  CAS  Google Scholar 

  • Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000

    PubMed  CAS  Google Scholar 

  • LeMoual H, Koshland DE (1996) Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261:568–585

    CAS  Google Scholar 

  • Li M, Hazelbauer GL (2005) Adaptational assistance in clusters of bacterial chemoreceptors. Mol Microbiol 56:1617–1626

    PubMed  CAS  Google Scholar 

  • Liarzi O, Barak R, Bronner V, Dines M, Sagi Y, Shainskaya A, Eisenbach M (2010) Acetylation represses the binding of CheY to its target proteins. Mol Microbiol 77:1606

    CAS  Google Scholar 

  • Lipkow K, Andrews SS, Bray D (2004) Simulated diffusion of phosphorylated CheY through the cytoplasm of E. coli. J Bacteriol 187:45–53

    Google Scholar 

  • Liu JD, Parkinson JS (1989) Role of Chew protein in coupling membrane-receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci USA 86:8703–8707

    PubMed  CAS  Google Scholar 

  • Liu JD, Parkinson JS (1991) Genetic-evidence for interaction between the Chew and Tsr proteins during chemoreceptor signaling by Escherichia coli. J Bacteriol 173:4941–4951

    PubMed  CAS  Google Scholar 

  • Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266:733–744

    PubMed  CAS  Google Scholar 

  • Luke CJ, Kubiak E, Cockayne A, Elliott TS, Penn CW (1990) Identification of flagellar and associated polypeptides of Helicobacter (formerly Campylobacter) pylori. FEMS Microbiol Lett 59:225–230

    PubMed  CAS  Google Scholar 

  • Lupas A, Stock J (1989) Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J Biol Chem 264:17337–17342

    PubMed  CAS  Google Scholar 

  • Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci USA 92:11583–11587

    PubMed  CAS  Google Scholar 

  • Lux R, Munasinghe VRN, Castellano F, Lengeler JW, Corrie JET, Khan S (1999) Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell 10:1133–1146

    PubMed  CAS  Google Scholar 

  • Mackenzie C (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70:19–41

    PubMed  CAS  Google Scholar 

  • Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4:258–265

    PubMed  CAS  Google Scholar 

  • Macnab RM (1977) Bacterial flagella rotating in bundles – study in helical geometry. Proc Natl Acad Sci USA 74:221–225

    PubMed  CAS  Google Scholar 

  • Macnab RM (1999) The bacterial flagellum: reversible rotary propeller and type III export apparatus. J Bacteriol 181:7149–7153

    PubMed  CAS  Google Scholar 

  • Macnab RM (2004) Type III flagellar protein export and flagellar assembly. BBA-Mol Cell Res 1694:207–217

    CAS  Google Scholar 

  • Macnab RM, DeRosier DJ (1988) Bacterial flagellar structure and function. Can J Microbiol 34:442–451

    PubMed  CAS  Google Scholar 

  • Macnab R, Koshland DE (1974) Bacterial motility and chemotaxis - light-induced tumbling response and visualization of individual flagella. J Mol Biol 84:399–406

    PubMed  CAS  Google Scholar 

  • Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723

    PubMed  CAS  Google Scholar 

  • Maeda K, Imae Y (1979) Thermosensory transduction in Escherichia coli – inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci USA 76:91–95

    PubMed  CAS  Google Scholar 

  • Maeda K, Imae Y, Shioi JI, Oosawa F (1976) Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046

    PubMed  CAS  Google Scholar 

  • Magariyama Y, Ichiba M, Nakata K, Baba K, Ohtani T, Kudo S, Goto T (2005) Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys J 88:3648–3658

    PubMed  CAS  Google Scholar 

  • Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide chemotaxis in escherichia coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256

    PubMed  CAS  Google Scholar 

  • Massazza DA, Izzo SA, Gasperotti AF, Herrera Seitz MK, Studdert CA (2012) Functional and structural effects of seven-residue deletions on the coiled-coil cytoplasmic domain of a chemoreceptor. Mol Microiol 83:224–239

    CAS  Google Scholar 

  • McCarter LL (1994a) MotX, the channel component of the sodium-type flagellar motor. J Bacteriol 176:5988–5998

    PubMed  CAS  Google Scholar 

  • McCarter LL (1994b) Mot Y, A component of the sodium-type flagellar motor. J Bacteriol 176:4219–4225

    PubMed  CAS  Google Scholar 

  • McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29

    PubMed  CAS  Google Scholar 

  • Meister M, Lowe G, Berg HC (1987) The proton flux through the bacterial flagellar motor. Cell 49:643–650

    PubMed  CAS  Google Scholar 

  • Meier VM, Muschler P, Scharf BE (2007) Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti. J Bacteriol 189:1816–1826

    PubMed  CAS  Google Scholar 

  • Meier VM, Scharf BE (2009) Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti. J Bacteriol 191:5724–5733

    PubMed  CAS  Google Scholar 

  • Milburn MV, Prive GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE, Kim SH (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254:1342–1347

    PubMed  CAS  Google Scholar 

  • Miller AS, Falke JJ (2004) Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor. Biochemistry 43:1763–1770

    PubMed  CAS  Google Scholar 

  • Miller AS, Kohout SC, Gilman KA, Falke JJ (2006) CheA kinase of bacterial chemotaxis: chemical mapping of four essential docking sites. Biochemistry 45:8699–8711

    PubMed  CAS  Google Scholar 

  • Milligan DL, Koshland DE (1988) Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis J Biol Chem 263:6268–6275

    CAS  Google Scholar 

  • MimoriKiyosue Y, Vonderviszt F, Namba K (1997) Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J Mol Biol 270:222–237

    CAS  Google Scholar 

  • Minamino T, Macnab RM (2000a) Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microiol 35:1052–1064

    CAS  Google Scholar 

  • Minamino T, Macnab RM (2000b) FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microiol 37:1494–1503

    CAS  Google Scholar 

  • Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488

    PubMed  CAS  Google Scholar 

  • Minamino T, Chu R, Yamaguchi S, Macnab RM (2000) Role of FliJ in flagellar protein export in Salmonella. J Bacteriol 182:4207–4215

    PubMed  CAS  Google Scholar 

  • Minamino T, Kazetani KI, Tahara A, Suzuki H, Furukawa Y, Kihara M, Namba K (2006) Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol 360:510–519

    PubMed  CAS  Google Scholar 

  • Minamino T, Imada K, Kinoshita M, Nakamura S, Morimoto YV, Namba K (2011) Structural insight into the rotational switching mechanism of the bacterial flagellar motor. Plos Biol 9:e1000616

    Google Scholar 

  • Mitchell JG, Pearson L, Bonazinga A, Dillon S, Khouri H, Paxinos R (1995) Long lag times and high velocities in the motility of natural assemblages of marine-bacteria. Appl Environ Microb 61:877–882

    CAS  Google Scholar 

  • Mizuno T, Imae Y (1984) Conditional inversion of the thermoresponse in Escherichia coli. J Bacteriol 159:360–367

    PubMed  CAS  Google Scholar 

  • Mobley HLT, Belas R (1995) Swarming and pathogenicity of Proteus-Mirabilis in the urinary-tract. Trends Microbiol 3:280–284

    PubMed  CAS  Google Scholar 

  • Morgan DG, Baumgartner JW, Hazelbauer GL (1993) Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide-range of bacterial species. J Bacteriol 175:133–140

    PubMed  CAS  Google Scholar 

  • Morgan DG, Owen C, Melanson LA, DeRosier DJ (1995) Structure of bacterial flagellar filaments at 11 Ångstrom resolution – packing of the alpha-helices. J Mol Biol 249:88–110

    PubMed  CAS  Google Scholar 

  • Morrison TB, Parkinson JS (1997) A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. J Bacteriol 179:5543–5550

    PubMed  CAS  Google Scholar 

  • Mowbray SL (1999) Bacterial chemoreceptors: recent progress in structure and function. Mol Cells 9:115–118

    PubMed  CAS  Google Scholar 

  • Mowbray SL, Koshland DE (1987) Additive and independent responses in a single receptor – aspartate and maltose stimuli on the Tar Protein. Cell 50:171–180

    PubMed  CAS  Google Scholar 

  • Muff TJ, Ordal GW (2007) The CheC phosphatase regulates chemotactic adaptation through CheD. J Biol Chem 282:34120–34128

    PubMed  CAS  Google Scholar 

  • Muff TJ, Ordal GW (2008) The diverse CheC-type phosphatases: chemotaxis and beyond. Mol Microbiol 70:1054–1061

    Google Scholar 

  • Muppirala UK, Desensi S, Lybrand TP, Hazelbauer GL, Li ZJ (2009) Molecular modeling of flexible arm-mediated interactions between bacterial chemoreceptors and their modification enzyme. Protein Sci 18:1702–1714

    PubMed  CAS  Google Scholar 

  • Muramoto K, Sugiyama S, Cragoe EJ, Imae Y (1994) Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J Biol Chem 269:3374–3380

    PubMed  CAS  Google Scholar 

  • Namba K, Vonderviszt F (1997) Molecular architecture of bacterial flagellum. Q Rev Biophys 30:1–65

    PubMed  CAS  Google Scholar 

  • Namba K, Yamashita I, Vonderviszt F (1989) Structure of the core and central channel of bacterial flagella. Nature 342:648–654

    PubMed  CAS  Google Scholar 

  • Nara T, Kawagishi I, Nishiyama S, Homma M, Imae Y (1996) Modulation of the thermosensing profile of the Escherichia coli aspartate receptor Tar by covalent modification of its methyl-accepting sites. J Biol Chem 271:17932–17936

    PubMed  CAS  Google Scholar 

  • Ng SYM, Chaban B, Jarrell KF (2006) Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotech 11:167–191

    CAS  Google Scholar 

  • Nikaido H, Saier MH (1992) Transport proteins in bacteria - common themes in their design. Science 258:936–942

    PubMed  CAS  Google Scholar 

  • Nishiyama SI, Nara T, Homma M, Imae Y, Kawagishi I (1997) Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine. J Bacteriol 179:6573–6580

    PubMed  CAS  Google Scholar 

  • Nishiyama S, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microiol 32:357–365

    CAS  Google Scholar 

  • O'Connor C, Matsumura P, Campos A (2009) The CheZ binding interface of CheAS is located in alpha-helix E. J Bacteriol 191:5845–5848

    PubMed  Google Scholar 

  • Oh JI, Kaplan S (2000) Redox signaling: globalization of gene expression. EMBO J 19:4237–4247

    PubMed  CAS  Google Scholar 

  • Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Gene flia encodes an alternative sigma factor specific for flagellar operons in Salmonella-typhimurium. Mol Gen Genet 221:139–147

    PubMed  CAS  Google Scholar 

  • O'Toole R, von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathogenesis 37:41–46

    Google Scholar 

  • Overmann J (2010) The phototrophic consortium “Chlorochromatium aggregatum” – A model for bacterial heterologous multicellularity. Adv Exp Med Biol 675:15–29

    Google Scholar 

  • Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208

    PubMed  CAS  Google Scholar 

  • Packer HL, Gauden DE, Armitage JP (1996) The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli. Microbiology 142:593–599

    PubMed  CAS  Google Scholar 

  • Park SY, Chao X, Gonzalez-Bonet G, Beel BD, Bilwes AM, Crane BR (2004) Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16:563–574

    PubMed  CAS  Google Scholar 

  • Park SY, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR (2006a) Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 13:400–407

    PubMed  CAS  Google Scholar 

  • Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR (2006b) Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103:11886–11891

    PubMed  CAS  Google Scholar 

  • Parkinson JS (1977) Behavioral genetics in bacteria. Annu Rev Genet 11:397–414

    PubMed  CAS  Google Scholar 

  • Parkinson JS (2010) Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 64:101–122

    PubMed  CAS  Google Scholar 

  • Parkinson JS, Ames P, Studdert CA (2005) Collaborative signaling by bacterial chemoreceptors. Curr Opin Microbiol 8:116–121

    PubMed  CAS  Google Scholar 

  • Paster E, Ryu WS (2008) The thermal impulse response of Escherichia coli. Proc Natl Acad Sci USA 105:5373–5377

    PubMed  CAS  Google Scholar 

  • Patrick JE, Kearns DB (2012) Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microiol 83:14–23

    CAS  Google Scholar 

  • Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D (2011) Architecture of the flagellar rotor. EMBO J 30:2962–2971

    PubMed  CAS  Google Scholar 

  • Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microiol 71:836–850

    CAS  Google Scholar 

  • Platzer J, Sterr W, Hausmann M, Schmitt R (1997) Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J Bacteriol 179:6391–6399

    PubMed  CAS  Google Scholar 

  • Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P, Camarena L (2007) A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides. J Bacteriol 189:3208–3216

    PubMed  CAS  Google Scholar 

  • Poole PS, Armitage JP (1989) Role of metabolism in the chemotactic response of Rhodobacter sphaeroides to ammonia. J Bacteriol 171:2900–2902

    PubMed  CAS  Google Scholar 

  • Porter SL, Warren AV, Martin AC, Armitage JP (2002) The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol 46:1081–1094

    PubMed  CAS  Google Scholar 

  • Porter SL, Wadhams GH, Martin AC, Byles ED, Lancaster DE, Armitage JP (2006) The CheYs of Rhodobacter sphaeroides. J Biol Chem 281:32694–32704

    PubMed  CAS  Google Scholar 

  • Porter SL, Roberts MAJ, Manning CS, Armitage JP (2008) A bifunctional kinase-phosphatase in bacterial chemotaxis. Proc Natl Acad SciUSA 105:18531–18536

    CAS  Google Scholar 

  • Puskas A, Greenberg EP, Kaplan S, Schaeffer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537

    PubMed  CAS  Google Scholar 

  • Ragatz L, Jiang ZY, Bauer CE, Gest H (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum-Centenum. Arch Microbiol 163:1–6

    PubMed  CAS  Google Scholar 

  • Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16:480–487

    PubMed  CAS  Google Scholar 

  • Rebbapragada A (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94:10541–10546

    PubMed  CAS  Google Scholar 

  • Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103:8066–8071

    PubMed  CAS  Google Scholar 

  • Riepl H, Maurer T, Kalbitzer HR, Meier VM, Haslbeck M, Schmitt R, Scharf B (2008) Interaction of CheY2 and CheY2-P with the cognate CheA kinase in the chemosensory-signalling chain of Sinorhizobium meliloti. Mol Microbiol 69:1373–1384

    PubMed  CAS  Google Scholar 

  • Ringgaard S, Schirner K, Davis BM, Waldor MK (2011) A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Gene Dev 25:1544–1555

    PubMed  CAS  Google Scholar 

  • Romagnoli S, Armitage JP (1999) Roles of chemosensory pathways in transient changes in swimming speed of Rhodobacter sphaeroides induced by changes in photosynthetic electron transport. J Bacteriol 181:34–39

    PubMed  CAS  Google Scholar 

  • Romagnoli S, Hochkoeppler A, Damgaard L, Zannoni D (1997) The effect of respiration on the phototactic behavior of the purple nonsulfur bacterium Rhodospirillum centenum. Arch Microb 167:99–105

    CAS  Google Scholar 

  • Romagnoli S, Packer HL, Armitage JP (2002) Tactic responses to oxygen in the phototrophic bacterium Rhodobacter sphaeroides WS8N. J Bacteriol 184:5590–5598

    PubMed  CAS  Google Scholar 

  • Rosario MM, Fredrick KL, Ordal GW, Helmann JD (1994) Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J Bacteriol 176:2736–2739

    PubMed  CAS  Google Scholar 

  • Rosario MM, Kirby JR, Bochar DA, Ordal GW (1995) Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34:3823–3831

    PubMed  CAS  Google Scholar 

  • Sackett MJ, Armitage JP, Sherwood EE, Pitta TP (1997) Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J Bacteriol 179:6764–6768

    PubMed  CAS  Google Scholar 

  • Salman H, Libchaber A (2007) A concentration-dependent switch in the bacterial response to temperature. Nat Cell Biol 9:1098–1100

    PubMed  CAS  Google Scholar 

  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337

    PubMed  CAS  Google Scholar 

  • Sanders DA, Mendez B, Koshland DE (1989) Role of the Chew protein in bacterial chemotaxis – overexpression is equivalent to absence. J Bacteriol 171:6271–6278

    PubMed  CAS  Google Scholar 

  • Sarkar MK, Paul K, Blair DF (2010) Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J Biol Chem 285:675–684

    PubMed  CAS  Google Scholar 

  • Scharf BE, Fahrner KA, Turner L, Berg HC (1998) Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci USA 95:201–206

    PubMed  CAS  Google Scholar 

  • Scharf B, Schuster-Wolff-Buhring H, Rachel R, Schmitt R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: Importance of flagellin a for flagellar filament structure and transcriptional regulation. J Bacteriol 183:5334–5342

    PubMed  CAS  Google Scholar 

  • Schuster SC, Swanson RV, Alex LA, Bourret RB, Simon MI (1993) Assembly and function of a quaternary signal-transduction complex monitored by surface-plasmon resonance. Nature 365:343–347

    PubMed  CAS  Google Scholar 

  • Scott WG, Milligan DL, Milburn MV, Prive GG, Yeh J, Koshland DE, Kim SH (1993) Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella-typhimurium. J Mol Biol 232:555–573

    PubMed  CAS  Google Scholar 

  • Segall JE, Block SM, Berg HC (1986) Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci USA 83:9486–9493

    Google Scholar 

  • Seidler RJ, Starr MP (1968) Structure of flagellum of Bdellovibrio bacteriovorus. J Bacteriol 95:1952

    PubMed  CAS  Google Scholar 

  • Seymour JR, Simo R, Ahmed T, Stocker R (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–345

    PubMed  CAS  Google Scholar 

  • Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH (2008) It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210

    PubMed  Google Scholar 

  • Shimizu TS, Le Novere N, Levin MD, Beavil AJ, Sutton BJ, Bray D (2000) Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol 2:792–796

    PubMed  CAS  Google Scholar 

  • Shimizu TS, Aksenov SV, Bray D (2003) A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J Mol Biol 329:291–309

    PubMed  CAS  Google Scholar 

  • Shinoda S, Okamoto K (1977) Formation and function of Vibrio-parahaemolyticus lateral flagella. J Bacteriol 129:1266–1271

    PubMed  CAS  Google Scholar 

  • Silversmith RE (2010) Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol 13:177–183

    PubMed  CAS  Google Scholar 

  • Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. In: Allen IL (ed) Advances in applied microbiology. Academic, New York, pp 257–295, Chapter 8

    Google Scholar 

  • Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436

    PubMed  CAS  Google Scholar 

  • Sourjik V, Schmitt R (1998) Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–2335

    PubMed  CAS  Google Scholar 

  • Sourjik V, Sterr W, Platzer J, Bos I, Haslbeck M, Schmitt R (1998) Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 223:283–290

    PubMed  CAS  Google Scholar 

  • Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Google Scholar 

  • Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    PubMed  CAS  Google Scholar 

  • Sprenger WW, Hoff WD, Armitage JP, Hellingwerf KJ (1993) The eubacterium Ectothiorhodospira-halophila is negatively phototactic, with a wavelength dependence that fits the absorption-spectrum of the photoactive yellow protein. J Bacteriol 175:3096–3104

    PubMed  CAS  Google Scholar 

  • Springer WR, Koshland DE (1977) Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc Natl Acad Sci USA 74:533–537

    PubMed  CAS  Google Scholar 

  • Starrett DJ, Falke JJ (2005) Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry 44:1550–1560

    PubMed  CAS  Google Scholar 

  • Stewart RC (1997) Kinetic characterization of phosphotransfer between CheA and CheY in the bacterial chemotaxis signal transduction pathway. Biochemistry 36:2030–2040

    PubMed  CAS  Google Scholar 

  • Stewart RC, Dahlquist FW (1988) N-terminal half of Cheb is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J Bacteriol 170:5728–5738

    PubMed  CAS  Google Scholar 

  • Stewart RC, Roth AF, Dahlquist FW (1990) Mutations that affect control of the methylesterase activity of Cheb, a component of the chemotaxis adaptation system in Escherichia coli. J Bacteriol 172:3388–3399

    PubMed  CAS  Google Scholar 

  • Stewart RC, Jahreis K, Parkinson JS (2000) Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39:13157–13165

    PubMed  CAS  Google Scholar 

  • Stock JB, Koshland DE (1978) A protein methylesterase involved in bacterial sensing. Proc Natl Acad SciUSA 75:3659–3663

    CAS  Google Scholar 

  • Stock JB, Surette MG (1996) Chemotaxis. In: Neidhardt FC, Curtiss RI, Ingraham JL, Lin EEC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 1103–1129

    Google Scholar 

  • Stock AM, Mottonen JM, Stock JB, Schutt CE (1989) Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745–749

    PubMed  CAS  Google Scholar 

  • Stock AM, Martinezhackert E, Rasmussen BF, West AH, Stock JB, Ringe D, Petsko GA (1993) Structure of the Mg2+ bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32:13375–13380

    PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    PubMed  CAS  Google Scholar 

  • Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 105:4209–4214

    PubMed  CAS  Google Scholar 

  • Streif S, Staudinger WF, Marwan W, Oesterhelt D (2008) Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J Mol Biol 384:1–8

    PubMed  CAS  Google Scholar 

  • Surette MG, Levit M, Liu Y, Lukat G, Ninfa EG, Ninfa A, Stock JB (1996) Dimerization is required for the activity of the protein histidine kinase CheA that mediates signal transduction in bacterial chemotaxis. J Biol Chem 271:939–945

    PubMed  CAS  Google Scholar 

  • Suzuki H, Yonekura K, Murata K, Hirai T, Oosawa K, Namba K (1998) A structural feature in the central channel of the bacterial flagellar FliF ring complex is implicated in type III protein export. J Struct Biol 124:104–114

    PubMed  CAS  Google Scholar 

  • Swain KE, Gonzalez MA, Falke JJ (2009) Engineered socket study of signaling through a four-helix bundle: evidence for a yin−yang mechanism in the kinase control module of the aspartate receptor. Biochemistry 48:9266–9277

    PubMed  CAS  Google Scholar 

  • Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289

    PubMed  CAS  Google Scholar 

  • Swanson RV, Schuster SC, Simon MI (1993) Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochemistry 32:7623–7629

    PubMed  CAS  Google Scholar 

  • Szurmant H, Bunn MW, Cannistraro VJ, Ordal GW (2003) Bacillus subtilis hydrolyzes CheY-P at the location of its action: the flagellar switch. J Biol Chem 278:48611–48616

    PubMed  CAS  Google Scholar 

  • Szurmant H, Muff TJ, Ordal GW (2004) Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792

    PubMed  CAS  Google Scholar 

  • Tang H, Braun TF, Blair DF (1996) Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261:209–221

    PubMed  CAS  Google Scholar 

  • Taylor BL, Koshland DE (1974) Reversal of flagellar rotation in monotrichous and peritrichous bacteria – Generation of changes in direction. J Bacteriol 119:640–642

    PubMed  CAS  Google Scholar 

  • Taylor BL, Miller JB, Warrick HM, Koshland DE (1979) Electron-acceptor taxis and blue-light effect on bacterial chemotaxis. J Bacteriol 140:567–573

    PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128

    PubMed  CAS  Google Scholar 

  • Terwilliger TC, Koshland DE (1984) Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. J Biol Chem 259:7719–7725

    PubMed  CAS  Google Scholar 

  • Thiem S, Sourjik V (2008) Stochastic assembly of chemoreceptor clusters in Escherichia coli. Mol Microbiol 68:1228–1236

    PubMed  CAS  Google Scholar 

  • Thiem S, Kentner D, Sourjik V (2007) Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO J 26:1615–1623

    PubMed  CAS  Google Scholar 

  • Thomas NA, Bardy SL, Jarrell KF (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 25:147–174

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Rittenberg SC (1985) Isolation and composition of sheathed flagella from Bdellovibrio-bacteriovorus-109 J. J Bacteriol 163:1047–1054

    PubMed  CAS  Google Scholar 

  • Thompson SR, Wadhams GH, Armitage JP (2006) The positioning of cytoplasmic protein clusters in bacteria. Proc Natl Acad Sci USA 103:8209–8214

    PubMed  CAS  Google Scholar 

  • Tindall MJ, Porter SL, Maini PK, Armitage JP (2010a) Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput Biol 6:e1000896

    PubMed  Google Scholar 

  • Toews ML, Goy MF, Springer MS, Adler J (1979) Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc Natl Acad Sci USA 76:5544–5548

    PubMed  CAS  Google Scholar 

  • Trachtenberg S, DeRosier DJ (1987) 3-Dimensional structure of the frozen hydrated flagellar filament – the left-handed filament of Salmonella typhimurium. J Mol Biol 195:581–601

    PubMed  CAS  Google Scholar 

  • Trachtenberg S, DeRosier DJ (1991) A molecular switch – subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments. J Mol Biol 220:67–77

    PubMed  CAS  Google Scholar 

  • Trachtenberg S, DeRosier DJ (1992) Conformational switching in the flagellar filament of Salmonella typhimurium. J Mol Biol 226:447–454

    PubMed  CAS  Google Scholar 

  • Trachtenberg S, DeRosier DJ, Macnab RM (1987) Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J Mol Biol 195:603–620

    PubMed  CAS  Google Scholar 

  • Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801

    PubMed  CAS  Google Scholar 

  • Uedaira H, Morii H, Ishimura M, Taniguchi H, Namba K, Vonderviszt F (1999) Domain organization of flagellar hook protein from Salmonella typhimurium. FEBS Lett 445:126–130

    PubMed  CAS  Google Scholar 

  • Ueno T, Oosawa K, Aizawa SI (1992) M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein FliF. J Biol Chem 227:672–677

    CAS  Google Scholar 

  • Umemura T, Matsumoto Y, Ohnishi K, Homma M, Kawagishi I (2002) Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. J Biol Chem 277:1593–1598

    PubMed  CAS  Google Scholar 

  • Underbakke ES, Zhu YM, Kiessling LL (2011) Protein footprinting in a complex milieu: identifying the interaction surfaces of the chemotaxis adaptor protein CheW. J Mol Biol 409:483–495

    PubMed  CAS  Google Scholar 

  • Vladimirov N, Sourjik V (2009) Chemotaxis: how bacteria use memory. Biol Chem 390:1097–1104

    PubMed  CAS  Google Scholar 

  • Volz K, Matsumura P (1991) Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem 266:15511–15519

    PubMed  CAS  Google Scholar 

  • Vonderviszt F, Aizawa SI, Namba K (1991) Role of the disordered terminal regions of flagellin in filament formation and stability. J Mol Biol 221:1461–1474

    PubMed  CAS  Google Scholar 

  • Wadhams GH, Martin AC, Armitage JP (2000) Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol Microbiol 36:1222–1233

    PubMed  CAS  Google Scholar 

  • Wadhams GH, Warren AV, Martin AC, Armitage JP (2003) Targeting of two signal transduction pathways to different regions of the bacterial cell. Mol Microbiol 50:763–770

    PubMed  CAS  Google Scholar 

  • Wagenknecht T, DeRosier DJ, Aizawa S, Macnab RM (1982) Flagellar hook structures of Caulobacter and Salmonella and their relationship to filament structure. J Mol Biol 162:69–87

    PubMed  CAS  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Wang H, Matsumura P (1996) Characterization of the CheA(S)/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol Microiol 19:695–703

    CAS  Google Scholar 

  • Watts KJ, Ma QH, Johnson MS, Taylor BL (2004) Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 186:7440–7449

    PubMed  CAS  Google Scholar 

  • Watts KJ, Johnson MS, Taylor BL (2011) Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain. J Bacteriol 193:4095–4103

    PubMed  CAS  Google Scholar 

  • Welch M, Chinardet N, Mourey L, Birck C, Samara JP (1998) Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat Struct Biol 5:25–29

    PubMed  CAS  Google Scholar 

  • Wilkinson DA, Chacko SJ, Vénien-Bryan C, Wadhams GH, Armitage JP (2011) Regulation of flagellum number by FliA and FlgM and role in biofilm formation by Rhodobacter sphaeroides. J Bacteriol 193:4010–4014

    Google Scholar 

  • Wolgemuth CW, Charon NW (2005) The kinky propulsion of spiroplasma. Cell 122:827–828

    PubMed  CAS  Google Scholar 

  • Wolgemuth CW, Charon NW, Goldstein SF, Goldstein RE (2006) The flagellar cytoskeleton of the spirochetes. J Mol Microbiol Biotechnol 11:221–227

    PubMed  CAS  Google Scholar 

  • Wuichet K, Alexander RP, Zhulin IB (2007) Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:1–31

    PubMed  Google Scholar 

  • Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50

    Google Scholar 

  • Yamaguchi S, Aizawa SI, Kihara M, Isomura M, Jones CJ, Macnab RM (1986) Genetic-evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella Typhimurium. J Bacteriol 168:1172–1179

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Imae Y (1993) Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci USA 90:217–221

    PubMed  CAS  Google Scholar 

  • Yang HJ, Inokuchi H, Adler J (1995) Phototaxis away from blue-light by An Escherichia coli mutant accumulating protoporphyrin-Ix. Proc Natl Acad Sci USA 92:7332–7336

    PubMed  CAS  Google Scholar 

  • Yang HJ, Sasarman A, Inokuchi H, Adler J (1996) Non-iron porphyrins cause tumbling to blue light by an Escherichia coli mutant defective in hemG. Proc Natl Acad Sci USA 93:2459–2463

    PubMed  CAS  Google Scholar 

  • Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833

    PubMed  CAS  Google Scholar 

  • Zhang YH, Gardina PJ, Kuebler AS, Kang HS, Christopher JA, Manson MD (1999) Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. Proc Natl Acad Sci USA 96:939–944

    PubMed  CAS  Google Scholar 

  • Zhang P, Khursigara CM, Hartnell LM, Subramaniam S (2007) Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proc Natl Acad Sci USA 104:3777–3781

    PubMed  CAS  Google Scholar 

  • Zhao RB, Amsler CD, Matsumura P, Khan S (1996a) FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J Bacteriol 178:258–265

    PubMed  CAS  Google Scholar 

  • Zhao RH, Pathak N, Jaffe H, Reese TS, Khan S (1996b) FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261:195–208

    PubMed  CAS  Google Scholar 

  • Zhao R, Collins EJ, Bourret RB, Silversmith RE (2002) Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat Struct Biol 9:570–575

    PubMed  CAS  Google Scholar 

  • Zhou JD, Blair DF (1997) Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273:428–439

    PubMed  CAS  Google Scholar 

  • Zhou HJ, Dahlquist FW (1997) Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. Biochemistry 36:699–710

    PubMed  CAS  Google Scholar 

  • Zhou HJ, Lowry DF, Swanson RV, Simon MI, Dahlquist FW (1995a) Nmr-studies of the phosphotransfer domain of the histidine kinase Chea from Escherichia coli – assignments, secondary structure, general fold, and backbone dynamics. Biochemistry 34:13858–13870

    PubMed  CAS  Google Scholar 

  • Zhou J, Fazzio RT, Blair DF (1995b) Membrane topology of the MotA protein of Escherichia coli. J Mol Biol 251:237–242

    PubMed  CAS  Google Scholar 

  • Zhou JD, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95:6436–6441

    PubMed  CAS  Google Scholar 

  • Zhou JD, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735

    PubMed  CAS  Google Scholar 

  • Zhou Q, Ames P, Parkinson JS (2009) Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors. Mol Microbiol 73:801–814

    PubMed  CAS  Google Scholar 

  • Zhou Q, Ames P, Parkinson JS (2011) Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor. Mol Microbiol 80:596–611

    PubMed  CAS  Google Scholar 

  • Zhu XY, Rebello J, Matsumura P, Volz K (1997) Crystal structures of CheY mutants Y106W and T871/Y106W – CheY activation correlates with movement of residue 106. J Biol Chem 272:5000–5006

    PubMed  CAS  Google Scholar 

  • Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45(45):157–198

    PubMed  CAS  Google Scholar 

  • Zimmer MA, Tiu J, Collins MA, Ordal GW (2000) Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J Biol Chem 275:24264–24272

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research on R. sphaeroides in the Armitage lab is funded by the UK BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith P. Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Armitage, J.P., Scott, K.A. (2013). Bacterial Behavior. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_53

Download citation

Publish with us

Policies and ethics