Skip to main content

Reactive Oxygen Species in the Pathogenesis of Chronic Kidney Disease: Lessons Derived from Diabetic Nephropathy

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Chronic kidney disease (CKD) is a major problem worldwide that adversely affects human health by increasing the cardiovascular disease (CVD) and reducing the life span and ultimately increases cost to the health-care system. One of the common disease processes that are a major contributing factor in increasing its incidence is diabetic nephropathy. The consensus at present is that oxidative stress may be the common denominator link for the major pathways involved in the development and progression of diabetic nephropathy progressing towards CKD. Despite heterogeneity in the oxidative stress levels in the CKD population, some studies show amelioration of oxidant stress following the administration of antioxidants. There are diverse sources from which reactive oxygen species (ROS) are derived, such as NADPH oxidase pathway, advanced glycation end products (AGE), polyol pathway, uncoupled nitric oxide synthase (NOS), and mitochondrial respiratory chain via oxidative phosphorylation. The excess ROS generated leads to the activation of redox-sensitive transcription factors, e.g., Nrf2, and a number of cellular signaling pathways, such as MAP kinase. Such activation leads to increased expression of extracellular matrix (ECM) genes with progression to fibrosis and CKD and end-stage renal disease (ESRD). The CKD injury is further compounded when there is concomitant endothelial dysfunction and activation of renin-angiotensin system (RAS). In this scenario, there is a precipitous worsening of renal injury and thereby acceleration in the progression of CKD. In this review various aspects of oxidative stress coupled with the damage induced by endothelial dysfunctions and RAS are discussed in the context of diabetic nephropathy that invariably progress to CKD. It is hoped that this discussion would give an impetus for development of new generation of specific antioxidants that could potentially decelerate the progression of CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alp NJ, McAteer MA, Khoo J et al (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Art Thromb Vasc Biol 24:445–450

    CAS  Google Scholar 

  • Andersen S, Brochner-Mortensen J, Parving HH (2003) Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care 26:3296–3302

    PubMed  Google Scholar 

  • Anderson S, Jung FF, Ingelfinger JR (1993) Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol 265:F477–F486

    CAS  PubMed  Google Scholar 

  • Antelmann H, Helmann JD (2011) Thiol-based redox switches and gene regulation. Antioxid Redox Signal 14:1049–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antoniades C, Shirodaria C, Crabtree M et al (2007) Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation 116:2851–2859

    CAS  PubMed  Google Scholar 

  • Arnlov J, Evans JC, Meigs JB et al (2005) Low-grade albuminuria and incidence of cardiovascular disease events in non-hypertensive and nondiabetic individuals: the Framingham heart study. Circulation 112:969–975

    PubMed  Google Scholar 

  • Asaba K, Tojo A, Onozato ML et al (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67:1890–1898

    CAS  PubMed  Google Scholar 

  • Balakumar P, Arora MK, Reddy J, Anand-Srivastava MB (2009) Pathophysiology of diabetic nephropathy: involvement of multifaceted signaling mechanism. J Cardiovasc Pharmacol 54:129–138

    CAS  PubMed  Google Scholar 

  • Ballermann BJ (2007) Contribution of the endothelium to the glomerular permselectivity barrier in health and disease. Nephron Physiol 106:19–25

    Google Scholar 

  • Ballermann BJ, Stan RV (2007) Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol 18:2432–2438

    PubMed  Google Scholar 

  • Bao X, Lu C, Frangos JA (1999) Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb Vasc Biol 19:996–1003

    CAS  PubMed  Google Scholar 

  • Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Prac 2:209–220

    CAS  Google Scholar 

  • Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol 294:F1–F9

    CAS  Google Scholar 

  • Baylis C (2012) Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens 21:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    CAS  PubMed  Google Scholar 

  • Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 106:14385–14390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blum M, Yachnin T, Wollman Y et al (1998) Low nitric oxide production in patients with chronic renal failure. Nephron 79:265–268

    CAS  PubMed  Google Scholar 

  • Boaz M, Smetana S, Weinstein T et al (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomized placebo-controlled trial. Lancet 356:1213–1218

    CAS  PubMed  Google Scholar 

  • Boger RH (2003) When the endothelium cannot say 'NO' anymore. ADMA, an endogenous inhibitor of NO synthase, promotes cardiovascular disease. Euro Heart J 24:1901–1902

    CAS  Google Scholar 

  • Boger RH, Bode-Boger SM, Szuba A et al (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847

    CAS  PubMed  Google Scholar 

  • Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    CAS  PubMed  Google Scholar 

  • Brosius FC 3rd, Hostetter TH, Kelepouris E et al (2006) Detection of chronic kidney disease in patients with or at increased risk of cardiovascular disease: a science advisory from the American heart association kidney and cardiovascular disease council; the councils on high blood pressure research, cardiovascular disease in the young, and epidemiology and prevention; and the quality of care and outcomes research interdisciplinary working group: developed in collaboration with the national kidney foundation. Circulation 114:1083–1087

    PubMed  Google Scholar 

  • Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794

    CAS  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    CAS  PubMed  Google Scholar 

  • Ceriello A, Morocutti A, Mercuri F et al (2000) Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes 49:2170–2177

    CAS  PubMed  Google Scholar 

  • Chabrashvili T, Tojo A, Onozato ML et al (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269–274

    CAS  PubMed  Google Scholar 

  • Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14:323–327

    CAS  PubMed  Google Scholar 

  • Channon KM, Guzik TJ (2002) Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 53:515–524

    CAS  PubMed  Google Scholar 

  • Coca SG, Buller GK (2004) Albuminuria and mortality in hypertension. Ann Int Med 141:244–245

    PubMed  Google Scholar 

  • Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper ME (2001) Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 44:1957–1972

    CAS  PubMed  Google Scholar 

  • Coresh J, Astor BC, Greene T et al (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis 41:1–12

    PubMed  Google Scholar 

  • Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91:139–144

    CAS  PubMed  Google Scholar 

  • Crabtree MJ, Tatham AL, Al-Wakeel Y et al (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 284:1136–1144

    CAS  PubMed  Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945

    CAS  PubMed  Google Scholar 

  • De Caterina R, Libby P, Peng HB et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    PubMed Central  PubMed  Google Scholar 

  • De Vriese AS, Stoenoiu MS, Elger M et al (2001) Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. Kidney Int 60:202–210

    PubMed  Google Scholar 

  • de Zeeuw D (2004) Albuminuria, not only a cardiovascular/renal risk marker, but also a target for treatment? Kidney Int Suppl(S2–6)

    Google Scholar 

  • de Zeeuw D, Hillege HL, de Jong PE (2005) The kidney, a cardiovascular risk marker, and a new target for therapy. Kidney Int Suppl S25–S29

    Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  • Decleves A-E, Sharma K (2010) Pharmacological treatments for improvement of renal outcomes in diabetes. Nat Rev Nephrol 6:371–380

    CAS  PubMed  Google Scholar 

  • Deen WM (2004) What determines glomerular capillary permeability? J Clin Invest 114:1412–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dounousi E, Papavasiliou E, Makedou A et al (2006) Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis 48:752–760

    CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Role of mitochondria in health & disease. Diabetes 53(Suppl 1):S96–S102

    CAS  PubMed  Google Scholar 

  • El-Benna J, Dang PM, Gougerot-Pocidalo MA et al (2009) p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 41:217–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis EA, Grant MB, Murray FT et al (1998) Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Rad Biol Med 24:111–120

    CAS  PubMed  Google Scholar 

  • Esposito LA, Melov S, Panov A et al (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 96:4820–4825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foley RN, Collins AJ (2007) End-stage renal disease in the united states: an update from the united states renal data system. J Am Soc Nephrol 18:2644–2648

    PubMed  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    CAS  PubMed  Google Scholar 

  • Forster HG, ter Wee PM, Hohman TC et al (1996) Impairment of afferent arteriolar myogenic responsiveness in the galactose-fed rat is prevented by tolrestat. Diabetologia 39:907–914

    CAS  PubMed  Google Scholar 

  • Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349

    PubMed  Google Scholar 

  • Fox CS, Matsushita K, Woodward M et al (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–1673

    PubMed Central  PubMed  Google Scholar 

  • Friden V, Oveland E, Tenstad O (2011) The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int 79:1322–1330

    CAS  PubMed  Google Scholar 

  • Geiszt M, Kopp JB, Varnai P et al (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607

    CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    CAS  PubMed  Google Scholar 

  • Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    CAS  PubMed  Google Scholar 

  • Gorin Y, Block K, Hernandez J et al (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626

    CAS  PubMed  Google Scholar 

  • Greene DA, Lattimer SA, Sima AA (1987) Sorbitol, phosphoinositides, and sodium-potassium ATPase in the pathogenesis of diabetic complications. N Engl J Med 316:599–606

    CAS  PubMed  Google Scholar 

  • Griendling KK, Alexander RW (1997) Oxidative stress and cardiovascular disease. Circulation 96:3264–3265

    CAS  PubMed  Google Scholar 

  • Griendling KK, FitzGerald GA (2003a) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    PubMed  Google Scholar 

  • Griendling KK, FitzGerald GA (2003b) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108:2034–2040

    PubMed  Google Scholar 

  • Gupte SA, Levine RJ, Gupte RS et al (2006) Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in failing heart. J Mol Cell Cardiol 41:340–349

    CAS  PubMed  Google Scholar 

  • Gupte S, Labinskyy N, Gupte R et al (2010) Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM. PLoS ONE 5:e11800

    PubMed Central  PubMed  Google Scholar 

  • Guzik TJ, Harrison DG (2007) Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ Res 101:227–229

    CAS  PubMed  Google Scholar 

  • Hamano K, Nitta A, Ohtake T et al (2008) Associations of renal vascular resistance with albuminuria and other macroangiopathy in type 2 diabetic patients. Diabetes Care 31:1853–1857

    PubMed Central  PubMed  Google Scholar 

  • Han HJ, Lee YJ, Park SH et al (2005) High glucose-induced oxidative stress inhibits Na+/glucose co-transporter activity in renal proximal tubule cells. Am J Physiol Renal Physiol 288:F988–F996

    CAS  PubMed  Google Scholar 

  • Haraldsson B, Nystrom J (2012) The glomerular endothelium: new insights on function and structure. Curr Opinion Nephrol Hyper 21:258–263

    CAS  Google Scholar 

  • Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rew 88:451–487

    CAS  Google Scholar 

  • Heidland A, Sebekova K, Schinzel R (2001) Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis 38:S100–S106

    CAS  PubMed  Google Scholar 

  • Heitzer T, Schlinzig T, Krohn K et al (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678

    CAS  PubMed  Google Scholar 

  • Herrera M, Garvin JL (2005) Recent advances in the regulation of nitric oxide in the kidney. Hypertension 45:1062–1067

    CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    CAS  PubMed  Google Scholar 

  • Hirase T, Node K (2012) Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol 302:H499–H505

    CAS  PubMed  Google Scholar 

  • Hostetter TH, Rennke HG, Brenner BM (1982) The case for intrarenal hypertension in the initiation & progression of diabetic glomerulopathies. Am J Med 72:375–380

    CAS  PubMed  Google Scholar 

  • Ichihara A, Sakoda M, Mito-Kurauchi A et al (2008) Activated prorenin as a therapeutic target for diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S63–S66

    CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    CAS  PubMed  Google Scholar 

  • Ishii N, Patel KP, Lane PH et al (2001) Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus. J Am Soc Nephrol 12:1630–1639

    CAS  PubMed  Google Scholar 

  • Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28:1317–1327

    CAS  PubMed  Google Scholar 

  • Jenkins M, Goldsmith D (2012) Statins & kidney disease: is study of heart & renal protection at the cutting edge of evidence? Curr Opin Cardiol 27:429–440

    PubMed  Google Scholar 

  • Jiang T, Huang Z, Lin Y et al (2010) The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59:850–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SA, Hancock JT, Jones OT et al (1995) The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox. J Am Soc Nephrol 5:1483–1491

    CAS  PubMed  Google Scholar 

  • Kabe Y, Ando K, Hirao S et al (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403

    CAS  PubMed  Google Scholar 

  • Kang SW, Adler SG, Lapage J et al (2001) p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 60:543–552

    CAS  PubMed  Google Scholar 

  • Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antiox Redox Sig 7:1664–1673

    CAS  Google Scholar 

  • Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339–27342

    CAS  PubMed  Google Scholar 

  • Katsuyama M (2010) NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharma Sci 114:134–146

    CAS  Google Scholar 

  • Kielstein JT, Boger RH, Bode-Boger SM et al (2002) Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol 13:170–176

    CAS  PubMed  Google Scholar 

  • Klag MJ, Whelton PK, Randall BL et al (1997) End-stage renal disease in African-American and white men. 16-Year MRFIT findings. JAMA 277:1293–1298

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    CAS  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    CAS  PubMed  Google Scholar 

  • Komers R, Anderson S (2003) Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol 284:F1121–F1137

    CAS  PubMed  Google Scholar 

  • Komers R, Lindsley JN, Oyama TT et al (2000a) Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Am J Physiol Renal Physiol 279:F573–F583

    CAS  PubMed  Google Scholar 

  • Komers R, Oyama TT, Chapman JG et al (2000b) Effects of systemic inhibition of neuronal nitric oxide synthase in diabetic rats. Hypertension 35:655–661

    CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF et al (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    CAS  PubMed  Google Scholar 

  • Kuwabara A, Satoh M, Tomita N et al (2010) Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in zucker fatty rats. Diabetologia 53:2056–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon NS, Nathan CF, Stuehr DJ (1989) Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 264:20496–20501

    CAS  PubMed  Google Scholar 

  • Landmesser U, Drexler H (2005) The clinical significance of endothelial dysfunction. Curr Opin Cardiol 20:547–551

    PubMed  Google Scholar 

  • Lau T, Owen W, Yu YM et al (2000) Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J Clin Invest 105:1217–1225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee M, Saver JL, Chang KH et al (2010) Impact of microalbuminuria on incident stroke: a meta-analysis. Stroke 41:2625–2631

    PubMed  Google Scholar 

  • Levey AS, Coresh J, Balk E et al (2003) National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Int Med 139:137–147

    PubMed  Google Scholar 

  • Levey AS, Eckardt KU, Tsukamoto Y et al (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67:2089–2100

    PubMed  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP et al (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462

    CAS  PubMed  Google Scholar 

  • Lewis EJ, Hunsicker LG, Clarke WR et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    CAS  PubMed  Google Scholar 

  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13:1137–1143

    CAS  PubMed  Google Scholar 

  • Li JM, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:S221–S226

    CAS  PubMed  Google Scholar 

  • Liebau MC, Lang D, Bohm J et al (2006) Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol 290:F710–F719

    CAS  PubMed  Google Scholar 

  • Lieber MR, Karanjawala ZE (2004) Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol 5:69–75

    CAS  PubMed  Google Scholar 

  • Lu TM, Chung MY, Lin CC et al (2011) Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease. Clin J Am Soc Nephrol 6:1566–1572

    CAS  PubMed  Google Scholar 

  • Luppi P, Cifarelli V, Tse H et al (2008) Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia 51:1534–1543

    CAS  PubMed  Google Scholar 

  • Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    CAS  PubMed  Google Scholar 

  • Mahmoodi BK, Matsushita K, Woodward M et al (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 380:1649–1661

    PubMed Central  PubMed  Google Scholar 

  • Maier W, Cosentino F, Lutolf RB et al (2000) Tetrahydrobiopterin improves endothelial function in coronary artery disease. J Cardiovasc Pharmacol 35:173–178

    CAS  PubMed  Google Scholar 

  • Malo O, Desjardins F, Tanguay JF et al (2003) Tetrahydrobiopterin and antioxidants reverse the coronary endothelial dysfunction associated with left ventricular hypertrophy in a porcine model. Cardio Res 59:501–511

    CAS  Google Scholar 

  • Mann GE, Bonacasa B, Ishii T et al (2009) Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 9:139–145

    CAS  PubMed  Google Scholar 

  • Matsushita K, van der Velde M, Astor BC et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    PubMed Central  PubMed  Google Scholar 

  • McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    CAS  PubMed  Google Scholar 

  • Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26:2439–2444

    CAS  PubMed  Google Scholar 

  • Moens AL, Takimoto E, Tocchetti CG et al (2008) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117:2626–2636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    CAS  PubMed  Google Scholar 

  • Nam SM, Lee MY, Koh JH et al (2009) Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: the role of reducing oxidative stress in its protective property. Diabetes Res Clin Pract 83:176–182

    CAS  PubMed  Google Scholar 

  • Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    CAS  PubMed  Google Scholar 

  • Nguyen G, Delarue F, Burckle C et al (2002) Pivotal role of renin/prorenin receptor in angiotensin II production & cellular responses to renin. J Clin Invest 109:1417–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieuwdorp M, Mooij HL, Kroon J et al (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132

    CAS  PubMed  Google Scholar 

  • Ninomiya T, Kiyohara Y, Kubo M et al (2005) Chronic kidney disease and cardiovascular disease in a general Japanese population: the hisayama study. Kidney Int 68:228–236

    PubMed  Google Scholar 

  • Omer S, Shan J, Varma DR et al (1999) Augmentation of diabetes-associated renal hyper-filtration and nitric oxide production by pregnancy in rats. J Endocrinol 161:15–23

    CAS  PubMed  Google Scholar 

  • Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170–S180

    CAS  PubMed  Google Scholar 

  • Pergola PE, Raskin P, Toto RD et al (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365:327–336

    CAS  PubMed  Google Scholar 

  • Pieper GM (1999) Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia 42:204–213

    CAS  PubMed  Google Scholar 

  • Pinto-Sietsma SJ, Mulder J, Janssen WM et al (2000) Smoking is related to albuminuria and abnormal renal function in nondiabetics. Ann Int Med 133:585–591

    CAS  PubMed  Google Scholar 

  • Pou S, Pou WS, Bredt DS et al (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176

    CAS  PubMed  Google Scholar 

  • Prichard SS (2003) Impact of dyslipidemia in end-stage renal disease. J Am Soc Nephrol 14:S315–S320

    CAS  PubMed  Google Scholar 

  • Radeke HH, Cross AR, Hancock JT et al (1991) Functional expression of NADPH oxidase components (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells. J Biol Chem 266:21025–21029

    CAS  PubMed  Google Scholar 

  • Raskin P, Rosenstock J (1987) Aldose reductase inhibitors and diabetic complications. Am J Med 83:298–306

    CAS  PubMed  Google Scholar 

  • Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324:1284–1287

    CAS  PubMed  Google Scholar 

  • Ronco C, Cicoira M, McCullough PA (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely de-compensated heart failure. J Am Coll Cardiol 60:1031–1042

    PubMed  Google Scholar 

  • Rudberg S, Persson B, Dahlquist G (1992) Increased glomerular filtration rate as a predictor of diabetic nephropathy–an 8-year prospective study. Kidney Int 41:822–828

    CAS  PubMed  Google Scholar 

  • Ruggenenti P, Fassi A, Ilieva AP et al (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351:1941–1951

    CAS  PubMed  Google Scholar 

  • Sachse A, Wolf G (2007) Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 18:2439–2446

    CAS  PubMed  Google Scholar 

  • Salmon AH, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria & increased microvascular permeability. J Pathol 226:562–574

    CAS  PubMed  Google Scholar 

  • Salmon AH, Ferguson JK, Burford JL et al (2012) Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 23:1339–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez AP, Sharma K (2009) Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med 11:e13

    PubMed  Google Scholar 

  • Sarnak MJ, Levey AS, Schoolwerth AC et al (2003a) Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Hypertension 42:1050–1065

    CAS  PubMed  Google Scholar 

  • Sarnak MJ, Levey AS, Schoolwerth AC et al (2003b) Kidney disease as a risk factor for development of cardiovascular disease: a statement from American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108:2154–2169

    PubMed  Google Scholar 

  • Satofuka S, Ichihara A, Nagai N et al (2009) (Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation. Diabetes 58:1625–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh M, Fujimoto S, Haruna Y et al (2005) NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288:F1144–F1152

    CAS  PubMed  Google Scholar 

  • Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    PubMed  Google Scholar 

  • Schroder K (2010) Isoform specific functions of Nox protein-derived reactive oxygen species in the vasculature. Curr Opin Pharmacol 10:122–126

    PubMed  Google Scholar 

  • Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423

    CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  • Singh R, Singh AK, Alavi N et al (2003) Mechanism of increased angiotensin II levels in mesangial cells cultured in high glucose. J Am Soc Nephrol 14:873–880

    CAS  PubMed  Google Scholar 

  • Singh A, Satchell SC, Neal CR et al (2007) Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 18:2885–2893

    CAS  PubMed  Google Scholar 

  • Smink PA, Lambers Heerspink HJ, Gansevoort RT et al (2012) Albuminuria, estimated GFR, traditional risk factors, and incident cardiovascular disease: the PREVEND (prevention of renal and vascular endstage disease) study. Am J Kidney Dis 60:804–811

    PubMed  Google Scholar 

  • Stehouwer CD, Smulders YM (2006) Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol 17:2106–2111

    CAS  PubMed  Google Scholar 

  • Stengel B, Tarver-Carr ME, Powe NR et al (2003) Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology 14:479–487

    PubMed  Google Scholar 

  • Stocker R, Keaney JF (2004) Role of oxidative modifications in atherosclerosis. Physiol Rew 84:1381–1478

    CAS  Google Scholar 

  • Stuehr DJ, Santolini J, Wang ZQ et al (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    CAS  PubMed  Google Scholar 

  • Sullivan JC, Pardieck JL, Hyndman KA et al (2010) Renal NOS activity, expression, and localization in male and female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 298:R61–R69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suto T, Losonczy G, Qiu C et al (1995) Acute changes in urinary excretion of nitrite + nitrate do not necessarily predict renal vascular NO production. Kidney Int 48:1272–1277

    CAS  PubMed  Google Scholar 

  • Swaminathan S, Shah SV (2008) Novel approaches targeted toward oxidative stress for the treatment of chronic kidney disease. Curr Opin Nephrol Hypertens 17:143–148

    CAS  PubMed  Google Scholar 

  • Taguma Y, Kitamoto Y, Futaki G et al (1985) Effect of captopril on heavy proteinuria in azotemic diabetics. N Engl J Med 313:1617–1620

    CAS  PubMed  Google Scholar 

  • Takahashi H, Ichihara A, Kaneshiro Y et al (2007) Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J Am Soc Nephrol 18:2054–2061

    CAS  PubMed  Google Scholar 

  • Tayeh MA, Marletta MA (1989) Macrophage oxidation of L-arginine to nitric oxide and nitrite. Tetrahydrobiopterin is required as a cofactor. J Biol Chem 264:19654–19658

    CAS  PubMed  Google Scholar 

  • Thallas-Bonke V, Thorpe SR, Coughlan MT et al (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57:460–469

    CAS  PubMed  Google Scholar 

  • Thomas MC, Cooper ME (2011) Diabetes: Bardoxolone improves kidney function in type 2 diabetes. Nat Rev Nephrol 7:552–553

    CAS  PubMed  Google Scholar 

  • Tolins JP, Shultz PJ, Raij L et al (1993) Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Physiol 265:F886–F895

    CAS  PubMed  Google Scholar 

  • Tonelli M, Wiebe N, Culleton B et al (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17:2034–2047

    PubMed  Google Scholar 

  • Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252

    CAS  PubMed  Google Scholar 

  • Turgut F, Bolton WK (2010) Potential new therapeutic agents for diabetic kidney disease. Am J Kidney Dis 55:928–940

    CAS  PubMed  Google Scholar 

  • Ueda S, Matsuoka H, Miyazaki H et al (2000) Tetrahydrobiopterin restores endothelial function in long-term smokers. J Am Coll Cardiol 35:71–75

    CAS  PubMed  Google Scholar 

  • Ueda S, Yamagishi S, Kaida Y et al (2007) Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology 12:582–590

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2009a) Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 11:1289–1299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ushio-Fukai M (2009b) Vascular signaling through G protein-coupled receptors: new concepts. Curr Opin Nephrol Hypertens 18:153–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ushio-Fukai M, Zafari AM, Fukui T et al (1996) p22phox Is a critical component of the super-oxide-generating NADH/NADPH oxidase system and regulates Angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–23321

    CAS  PubMed  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vasquez-Vivar J, Hogg N, Martasek P et al (1999) Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem 274:26736–26742

    CAS  PubMed  Google Scholar 

  • Veelken R, Hilgers KF, Hartner A et al (2000) Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy. J Am Soc Nephrol 11:71–79

    CAS  PubMed  Google Scholar 

  • Viberti G, Wheeldon NM (2002) Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 106:672–678

    CAS  PubMed  Google Scholar 

  • Vidotti DB, Casarini DE, Cristovam PC et al (2004) High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol 286:F1039–F1045

    CAS  PubMed  Google Scholar 

  • Weichert W, Paliege A, Provoost AP et al (2001) Upregulation of juxtaglomerular NOS1 and COX-2 precedes glomerulosclerosis in fawn-hooded hypertensive rats. Am J Physiol Renal Physiol 280:F706–F714

    CAS  PubMed  Google Scholar 

  • Weir MR (2007) Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol 2:581–590

    PubMed  Google Scholar 

  • Wever R, Boer P, Hijmering M et al (1999) Nitric oxide production is reduced in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 19:1168–1172

    CAS  PubMed  Google Scholar 

  • Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hyper Rep 4:160–166

    Google Scholar 

  • Williams RS (2000) Canaries in the coal mine: mitochondrial DNA and vascular injury from reactive oxygen species. Circ Res 86:915–916

    CAS  PubMed  Google Scholar 

  • Williamson JR, Chang K, Frangos M et al (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42:801–813

    CAS  PubMed  Google Scholar 

  • Wiseman MJ, Mangili R, Alberetto M et al (1987) Glomerular response mechanisms to glycemic changes in insulin-dependent diabetics. Kidney Int 31:1012–1018

    CAS  PubMed  Google Scholar 

  • Wolf G (2004) New insights into pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34:785–796

    CAS  PubMed  Google Scholar 

  • Woods LL, Mizelle HL, Hall JE (1987) Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Am J Physiol 252:F65–F73

    CAS  PubMed  Google Scholar 

  • Xu J, Knowler WC, Devereux RB et al (2007) Albuminuria within the "normal" range and risk of cardiovascular disease and death in American Indians: the strong heart study. Am J Kidney Dis 49:208–216

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin-angiotensin system in cardiac hypertrophy. Am J Cardiol 83:53H–57H

    CAS  PubMed  Google Scholar 

  • Yang S, Madyastha P, Bingel S et al (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276:5452–5458

    CAS  PubMed  Google Scholar 

  • Yatabe J, Sanada H, Yatabe MS et al (2009) Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. Am J Physiol Renal Physiol 296:F1052–F1060

    CAS  PubMed  Google Scholar 

  • Yoh K, Hirayama A, Ishizaki K et al (2008) Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells 13:1159–1170

    CAS  PubMed  Google Scholar 

  • Zafari AM, Ushio-Fukai M, Akers M et al (1998) Role of NADH/NADPH oxidase-derived H2O2 in Angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495

    CAS  PubMed  Google Scholar 

  • Zalba G, San Jose G, Moreno MU et al (2001) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38:1395–1399

    CAS  PubMed  Google Scholar 

  • Zatz R, Meyer TW, Rennke HG et al (1985) Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA 82:5963–5967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zatz R, Dunn BR, Meyer TW et al (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77:1925–1930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D (2010) The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid Redox Signal 13:1623–1626

    CAS  PubMed  Google Scholar 

  • Zheng H, Whitman SA, Wu W et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60:3055–3066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou Y, Akazawa H, Qin Y et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grant DK60635

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashpal S. Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kashihara, N., Satoh, M., Kanwar, Y.S. (2014). Reactive Oxygen Species in the Pathogenesis of Chronic Kidney Disease: Lessons Derived from Diabetic Nephropathy. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_185

Download citation

Publish with us

Policies and ethics