Skip to main content

Reactive Oxygen Species and Apoptosis

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Reactive oxygen species (ROS) are chemically reactive by-products of normal aerobic metabolism and xenobiotic exposure. ROS produced during different cellular reactions can be either beneficial or harmful to the cells. At physiological concentrations, ROS function as second messengers in intracellular signaling. On the other hand, aberrance in redox balance leading to excessive ROS production may cause biochemical alterations and induce oxidative modification of cellular macromolecules leading to cell death. Apoptosis or programmed cell death is a well-regulated physiological process involved in the regulation of tissue homeostasis. Induction of apoptosis by extracellular and intracellular signals triggers apoptotic-signaling pathways. The two main apoptotic pathways recognized in general are the death receptor or extrinsic pathway and the mitochondrial or intrinsic pathway. The redox state of a cell plays a major role in the regulation of apoptosis in response to any external or internal stimuli. ROS can mediate apoptosis by regulating the expression of various pro-apoptotic proteins such as caspases or anti-apoptotic proteins such as B cell lymphoma-2 (Bcl-2) and cellular FLICE-inhibitory protein (c-FLIP). Overexpression of anti-apoptotic proteins and dysregulated apoptosis is associated with various pathologies including cancer. In this chapter, we focus on the key apoptotic mechanisms and proteins that are regulated by the cellular redox state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedini MR, Qiu Q, Yan X, Tsang BK (2004) Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 23:6997–7004

    CAS  PubMed  Google Scholar 

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    CAS  PubMed  Google Scholar 

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    CAS  PubMed  Google Scholar 

  • Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, Weill B, Goldwasser F (2006) Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 119:41–48

    CAS  PubMed  Google Scholar 

  • Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623

    CAS  PubMed  Google Scholar 

  • Arkin M (2005) Protein-protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 9:317–324

    CAS  PubMed  Google Scholar 

  • Aronis A, Melendez JA, Golan O, Shilo S, Dicter N, Tirosh O (2003) Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species. Cell Death Differ 10:335–344

    CAS  PubMed  Google Scholar 

  • Azad N, Vallyathan V, Wang L, Tantishaiyakul V, Stehlik C, Leonard SS, Rojanasakul Y (2006) S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem 281:34124–34134

    CAS  PubMed  Google Scholar 

  • Azad N, Iyer AK, Manosroi A, Wang L, Rojanasakul Y (2008a) Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis. Carcinogenesis 29:1538–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008b) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11:1–15

    CAS  PubMed  Google Scholar 

  • Azad N, Iyer A, Vallyathan V, Wang L, Castranova V, Stehlik C, Rojanasakul Y (2010) Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Ann N Y Acad Sci 1203:1–6

    CAS  PubMed  Google Scholar 

  • Barbouti A, Amorgianiotis C, Kolettas E, Kanavaros P, Galaris D (2007) Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radic Biol Med 43:1377–1387

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    CAS  PubMed  Google Scholar 

  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701

    CAS  PubMed  Google Scholar 

  • Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270:7795–7798

    CAS  PubMed  Google Scholar 

  • Borutaite V, Brown GC (2001) Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett 500:114–118

    CAS  PubMed  Google Scholar 

  • Borutaite V, Brown GC (2003) Nitric oxide induces apoptosis via hydrogen peroxide, but necrosis via energy and thiol depletion. Free Radic Biol Med 35:1457–1468

    CAS  PubMed  Google Scholar 

  • Bratton SB, MacFarlane M, Cain K, Cohen GM (2000) Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256:27–33

    CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta 1777:877–881

    CAS  PubMed  Google Scholar 

  • Buolamwini JK (1999) Novel anticancer drug discovery. Curr Opin Chem Biol 3:500–509

    CAS  PubMed  Google Scholar 

  • Cerretani D, Bello S, Cantatore S, Fiaschi AI, Montefrancesco G, Neri M, Pomara C, Riezzo I, Fiore C, Bonsignore A, Turillazzi E, Fineschi V (2011) Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFalpha-mediated apoptosis in rat liver. Pharmacol Res 64:517–527

    CAS  PubMed  Google Scholar 

  • Chang DJ, Ringold GM, Heller RA (1992) Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-alpha is mediated by lipoxygenase metabolites of arachidonic acid. Biochem Biophys Res Commun 188:538–546

    CAS  PubMed  Google Scholar 

  • Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N, Rojanasakul Y (2005) Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 280:42044–42050

    CAS  PubMed  Google Scholar 

  • Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B, Rojanasakul Y (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 66:6353–6360

    CAS  PubMed  Google Scholar 

  • Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982

    CAS  PubMed  Google Scholar 

  • Chen ZX, Pervaiz S (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ 14:1617–1627

    CAS  PubMed  Google Scholar 

  • Chen ZX, Pervaiz S (2009) BCL-2: pro-or anti-oxidant? Front Biosci (Elite Ed) 1:263–268

    Google Scholar 

  • Chen SH, Wu HL, Lin MT, Jen CJ, Wing LY, Lei HY, Tsao CJ, Chang WC (1992) Cytoprotective effect of reduced glutathione in hydrogen peroxide-induced endothelial cell injury. Prostaglandins Leukot Essent Fatty Acids 45:299–305

    CAS  PubMed  Google Scholar 

  • Chen Z, Jiang H, Wan Y, Bi C, Yuan Y (2011) H(2)O (2)-induced secretion of tumor necrosis factor-alpha evokes apoptosis of cardiac myocytes through reactive oxygen species-dependent activation of p38 MAPK. Cytotechnology 64:65–73

    Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2009) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Circu ML, Moyer MP, Harrison L, Aw TY (2009) Contribution of glutathione status to oxidant-induced mitochondrial DNA damage in colonic epithelial cells. Free Radic Biol Med 47:1190–1198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clement MV, Hirpara JL, Pervaiz S (2003) Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumor cells to receptor and drug-induced apoptosis independent of the mitochondria. Cell Death Differ 10:1273–1285

    CAS  PubMed  Google Scholar 

  • Cook SA, Sugden PH, Clerk A (1999) Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 85:940–949

    CAS  PubMed  Google Scholar 

  • Crawford DR, Wang Y, Schools GP, Kochheiser J, Davies KJ (1997) Down-regulation of mammalian mitochondrial RNAs during oxidative stress. Free Radic Biol Med 22:551–559

    CAS  PubMed  Google Scholar 

  • Crawford DR, Abramova NE, Davies KJ (1998) Oxidative stress causes a general, calcium-dependent degradation of mitochondrial polynucleotides. Free Radic Biol Med 25:1106–1111

    CAS  PubMed  Google Scholar 

  • Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298

    CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  PubMed  Google Scholar 

  • Day TW, Najafi F, Wu CH, Safa AR (2006) Cellular FLICE-like inhibitory protein (c-FLIP): a novel target for Taxol-induced apoptosis. Biochem Pharmacol 71:1551–1561

    CAS  PubMed  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devadas S, Hinshaw JA, Zaritskaya L, Williams MS (2003) Fas-stimulated generation of reactive oxygen species or exogenous oxidative stress sensitize cells to Fas-mediated apoptosis. Free Radic Biol Med 35:648–661

    CAS  PubMed  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fadeel B, Zhivotovsky B, Orrenius S (1999) All along the watchtower: on the regulation of apoptosis regulators. FASEB J 13:1647–1657

    CAS  PubMed  Google Scholar 

  • Fas SC, Baumann S, Zhu JY, Giaisi M, Treiber MK, Mahlknecht U, Krammer PH, Li-Weber M (2006) Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood 108:3700–3706

    CAS  PubMed  Google Scholar 

  • Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    CAS  PubMed  Google Scholar 

  • Fukazawa T, Fujiwara T, Uno F, Teraishi F, Kadowaki Y, Itoshima T, Takata Y, Kagawa S, Roth JA, Tschopp J, Tanaka N (2001) Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 20:5225–5231

    CAS  PubMed  Google Scholar 

  • Golks A, Brenner D, Krammer PH, Lavrik IN (2006) The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203:1295–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, Wallach D (1997) CASH, a novel caspase homologue with death effector domains. J Biol Chem 272:19641–19644

    CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  PubMed  Google Scholar 

  • Griendling KK, Ushio-Fukai M (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91:21–27

    CAS  PubMed  Google Scholar 

  • Gulbins E, Welsch J, Lepple-Wienhuis A, Heinle H, Lang F (1997) Inhibition of Fas-induced apoptotic cell death by osmotic cell shrinkage. Biochem Biophys Res Commun 236:517–521

    CAS  PubMed  Google Scholar 

  • Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92:4507–4511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall AG (1999) Review: the role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29:238–245

    CAS  PubMed  Google Scholar 

  • Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102(Suppl 10):5–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han DK, Chaudhary PM, Wright ME, Friedman C, Trask BJ, Riedel RT, Baskin DG, Schwartz SM, Hood L (1997) MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death. Proc Natl Acad Sci USA 94:11333–11338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    CAS  PubMed  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    CAS  PubMed  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    CAS  PubMed  Google Scholar 

  • Howard AN, Bridges KA, Meyn RE, Chandra J (2009) ABT-737, a BH3 mimetic, induces glutathione depletion and oxidative stress. Cancer Chemother Pharmacol 65:41–54

    CAS  PubMed  Google Scholar 

  • Hu S, Vincenz C, Buller M, Dixit VM (1997) A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 272:9621–9624

    CAS  PubMed  Google Scholar 

  • Hu Y, Benedict MA, Wu D, Inohara N, Nunez G (1998) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95:4386–4391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Jiang C, Schuster T, Li GX, Daniel PT, Lu J (2006) Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway. Mol Cancer Ther 5:1873–1882

    CAS  PubMed  Google Scholar 

  • Hug H, Enari M, Nagata S (1994) No requirement of reactive oxygen intermediates in Fas-mediated apoptosis. FEBS Lett 351:311–313

    CAS  PubMed  Google Scholar 

  • Hutchins JB, Barger SW (1998) Why neurons die: cell death in the nervous system. Anat Rec 253:79–90

    CAS  PubMed  Google Scholar 

  • Inohara N, Koseki T, Hu Y, Chen S, Nunez G (1997) CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 94:10717–10722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    CAS  PubMed  Google Scholar 

  • Iyer AK, Azad N, Talbot S, Stehlik C, Lu B, Wang L, Rojanasakul Y (2011) Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol 187:3256–3266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jornot L, Petersen H, Junod AF (1998) Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions. Biochem J 335(Pt 1):85–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    CAS  PubMed  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274–1277

    CAS  PubMed  Google Scholar 

  • Kataoka T (2005) The caspase-8 modulator c-FLIP. Crit Rev Immunol 25:31–58

    CAS  PubMed  Google Scholar 

  • Katoh I, Tomimori Y, Ikawa Y, Kurata S (2004) Dimerization and processing of procaspase-9 by redox stress in mitochondria. J Biol Chem 279:15515–15523

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Suh N, Sporn M, Reed JC (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277:22320–22329

    CAS  PubMed  Google Scholar 

  • Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93:480–489

    CAS  PubMed  Google Scholar 

  • Kongkaneramit L, Sarisuta N, Azad N, Lu Y, Iyer AK, Wang L, Rojanasakul Y (2008) Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther 325:969–977

    CAS  PubMed  Google Scholar 

  • Korsmeyer SJ, McDonnell TJ, Nunez G, Hockenbery D, Young R (1990) Bcl-2: B cell life, death and neoplasia. Curr Top Microbiol Immunol 166:203–207

    CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Fiskum G (2005) Redox mechanisms of cytoprotection by Bcl-2. Antioxid Redox Signal 7:508–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    CAS  PubMed  Google Scholar 

  • Kristal BS, Chen J, Yu BP (1994) Sensitivity of mitochondrial transcription to different free radical species. Free Radic Biol Med 16:323–329

    CAS  PubMed  Google Scholar 

  • Krueger A, Baumann S, Krammer PH, Kirchhoff S (2001) FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21:8247–8254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larrick JW, Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 4:3215–3223

    CAS  PubMed  Google Scholar 

  • Lassegue B, Griendling KK (2002) Out phoxing the endothelium: what’s left without p47? Circ Res 90:123–124

    CAS  PubMed  Google Scholar 

  • LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75

    CAS  PubMed  Google Scholar 

  • Lee MW, Park SC, Yang YG, Yim SO, Chae HS, Bach JH, Lee HJ, Kim KY, Lee WB, Kim SS (2002) The involvement of reactive oxygen species (ROS) and p38 mitogen-activated protein (MAP) kinase in TRAIL/Apo2L-induced apoptosis. FEBS Lett 512:313–318

    CAS  PubMed  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    CAS  PubMed  Google Scholar 

  • Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Merlo Pich M, Paolucci U, Parenti Castelli G, Ventura B (2002) Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci 959:199–213

    CAS  PubMed  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  • Li D, Ueta E, Kimura T, Yamamoto T, Osaki T (2004) Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 95:644–650

    CAS  PubMed  Google Scholar 

  • Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580

    CAS  PubMed  Google Scholar 

  • Lockshin RA, Williams CM (1964) Programmed cell death. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10:643–649

    CAS  Google Scholar 

  • Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26

    CAS  PubMed  Google Scholar 

  • Low IC, Chen ZX, Pervaiz S (2010) Bcl-2 modulates resveratrol-induced ROS production by regulating mitochondrial respiration in tumor cells. Antioxid Redox Signal 13:807–819

    CAS  PubMed  Google Scholar 

  • Malorni W, Rivabene R, Santini MT, Donelli G (1993) N-acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett 327:75–78

    CAS  PubMed  Google Scholar 

  • Mates JM, Sanchez-Jimenez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170

    CAS  PubMed  Google Scholar 

  • Matsuda T, Eccleston CA, Rubinstein I, Rennard SI, Joyner WL (1991) Antioxidants attenuate endotoxin-induced microvascular leakage of macromolecules in vivo. J Appl Physiol 70:1483–1489

    CAS  PubMed  Google Scholar 

  • Mayer M, Noble M (1994) N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA 91:7496–7500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medan D, Wang L, Toledo D, Lu B, Stehlik C, Jiang BH, Shi X, Rojanasakul Y (2005) Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. J Cell Physiol 203:78–84

    CAS  PubMed  Google Scholar 

  • Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190:1033–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    CAS  PubMed  Google Scholar 

  • Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Grutter MG (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277:45162–45171

    CAS  PubMed  Google Scholar 

  • Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P (2001) Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276:18361–18374

    CAS  PubMed  Google Scholar 

  • Moriishi K, Huang DCS, Cory S, Adams JM (1999) Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. PNAS 96:9683–9688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, Chanvorachote P, Rojanasakul Y (2006) Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther 319:1062–1069

    CAS  PubMed  Google Scholar 

  • Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 7:102–111

    CAS  PubMed  Google Scholar 

  • Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    CAS  PubMed  Google Scholar 

  • Naismith JH, Sprang SR (1998) Modularity in the TNF-receptor family. Trends Biochem Sci 23:74–79

    CAS  PubMed  Google Scholar 

  • Nakajima T, Takayama T, Miyanishi K, Nobuoka A, Hayashi T, Abe T, Kato J, Sakon K, Naniwa Y, Tanabe H, Niitsu Y (2003) Reversal of multiple drug resistance in cholangiocarcinoma by the glutathione S-transferase-pi-specific inhibitor O1-hexadecyl-gamma-glutamyl-S-benzylcysteinyl-D-phenylglycine ethylester. J Pharmacol Exp Ther 306:861–869

    CAS  PubMed  Google Scholar 

  • Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    CAS  PubMed  Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    CAS  PubMed  Google Scholar 

  • Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    CAS  PubMed  Google Scholar 

  • Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    CAS  PubMed  Google Scholar 

  • Osford SM, Dallman CL, Johnson PW, Ganesan A, Packham G (2004) Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr Med Chem 11:1031–1039

    PubMed  Google Scholar 

  • Pan G, O’Rourke K, Dixit VM (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 273:5841–5845

    CAS  PubMed  Google Scholar 

  • Perez D, White E (2003) E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol 77:2651–2662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pervaiz S, Clement MV (2002) A permissive apoptotic environment: function of a decrease in intracellular superoxide anion and cytosolic acidification. Biochem Biophys Res Commun 290:1145–1150

    CAS  PubMed  Google Scholar 

  • Peter ME (2004) The flip side of FLIP. Biochem J 382:e1–e3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–542

    CAS  PubMed  Google Scholar 

  • Rachek LI, Yuzefovych LV, Ledoux SP, Julie NL, Wilson GL (2009) Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes. Toxicol Appl Pharmacol 240:348–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindale D, Koop BF, Peterson EP, Thornberry NA, Huang J, MacPherson DP, Black SC, Hornung F, Lenardo MJ, Hayden MR, Roy S, Nicholson DW (1998) Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 5:271–288

    CAS  PubMed  Google Scholar 

  • Reed JC (1997) Cytochrome c: can’t live with it–can’t live without it. Cell 91:559–562

    CAS  PubMed  Google Scholar 

  • Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418

    CAS  PubMed  Google Scholar 

  • Reinehr R, Becker S, Eberle A, Grether-Beck S, Haussinger D (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem 280:27179–27194

    CAS  PubMed  Google Scholar 

  • Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW (2008) Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 294:C413–C422

    CAS  PubMed  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    CAS  PubMed  Google Scholar 

  • Santamaria G, Martinez-Diez M, Fabregat I, Cuezva JM (2006) Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H + -ATP synthase. Carcinogenesis 27:925–935

    CAS  PubMed  Google Scholar 

  • Sato T, Machida T, Takahashi S, Iyama S, Sato Y, Kuribayashi K, Takada K, Oku T, Kawano Y, Okamoto T, Takimoto R, Matsunaga T, Takayama T, Takahashi M, Kato J, Niitsu Y (2004) Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J Immunol 173:285–296

    CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548

    CAS  PubMed  Google Scholar 

  • Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Williston Park) 16:217–226, 229; discussion 230–232

    Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    CAS  PubMed  Google Scholar 

  • Shu HB, Halpin DR, Goeddel DV (1997) Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6:751–763

    CAS  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  PubMed  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    CAS  PubMed  Google Scholar 

  • Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N (2002) Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J 20:359–368

    CAS  PubMed  Google Scholar 

  • Tang H, Qin Y, Li J, Gong X (2011) The scavenging of superoxide radicals promotes apoptosis induced by a novel cell-permeable fusion protein, sTRAIL: FeSOD, in tumor necrosis factor-related apoptosis-inducing ligand-resistant leukemia cells. BMC Biol 9:18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    CAS  PubMed  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521

    CAS  PubMed  Google Scholar 

  • Tschopp J, Irmler M, Thome M (1998) Inhibition of fas death signals by FLIPs. Curr Opin Immunol 10:552–558

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2000) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099

    CAS  PubMed  Google Scholar 

  • Van Houten B, Woshner V, Santos JH (2006) Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5:145–152

    Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    CAS  PubMed  Google Scholar 

  • Ventura JJ, Cogswell P, Flavell RA, Baldwin AS Jr, Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    CAS  PubMed  Google Scholar 

  • Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    CAS  PubMed  Google Scholar 

  • Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH, Rojanasakul Y (2008) The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072–3080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenzel U, Kuntz S, De Sousa UJ, Daniel H (2003) Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int J Cancer 106:666–675

    CAS  PubMed  Google Scholar 

  • Wong GH (1995) Protective roles of cytokines against radiation: induction of mitochondrial MnSOD. Biochim Biophys Acta 1271:205–209

    PubMed  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931

    CAS  PubMed  Google Scholar 

  • Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    CAS  PubMed  Google Scholar 

  • Yang JK (2008) FLIP as an anti-cancer therapeutic target. Yonsei Med J 49:19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    CAS  PubMed  Google Scholar 

  • Yuan J (1997) Transducing signals of life and death. Curr Opin Cell Biol 9:247–251

    CAS  PubMed  Google Scholar 

  • Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J (2001) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38:1395–1399

    CAS  PubMed  Google Scholar 

  • Zuzarte-Luis V, Hurle JM (2002) Programmed cell death in the developing limb. Int J Dev Biol 46:871–876

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Azad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Azad, N., Iyer, A.K.V. (2014). Reactive Oxygen Species and Apoptosis. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_15

Download citation

Publish with us

Policies and ethics