Skip to main content

Topological Gels

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 182 Accesses

Synonyms

Cross-linked necklace; Polyrotaxane gel; Slide-ring materials; Supramolecular network

Definition

Topological gels are cross-linked polyrotaxane. Cross-linking junctions consisting of cyclic molecules can move freely in polymer network unlike usual chemical gels and rubbers. In other words, polymer chains can pass through cross-linking junctions freely. Topological gels show extreme softness and strong shape recovery.

Introduction and Historical Background

Since the discovery of cross-linking in natural rubber with sulfur in 1839 by Goodyear, the cross-linking of polymeric materials has become one of the most important topics in polymer science and technology [1, 2]. Gels are typical cross-linked materials containing solvents in network. All gels have been classified into two categories: chemical gels and physical ones [3]. Physical gels have noncovalent cross-linking junctions from ionic bonding, hydrophobic interaction, hydrogen bonding, microcrystal formation, helix...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  2. Mark JE, Erman B (2007) Rubber elasticity: a molecular primer, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  3. Osada Y, Kajiwara K (eds) (2000) Gels handbook. Academic/Elsevier, Amsterdam

    Google Scholar 

  4. de Gennes PG (1999) Sliding gels. Phys A 271:231–237

    Google Scholar 

  5. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    CAS  Google Scholar 

  6. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327

    CAS  Google Scholar 

  7. Granick S, Rubinstein M (2004) Polymers – a multitude of macromolecules. Nat Mater 3:586–587

    CAS  Google Scholar 

  8. Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:488–500

    Google Scholar 

  9. Ito K (2010) Slide-ring materials using topological supramolecular architecture. Curr Opin Solid State Mater Sci 14:28–34

    CAS  Google Scholar 

  10. Ito K (2011) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41

    Google Scholar 

  11. Araki J, Zhao C, Ito K (2005) Efficient production of polyrotaxanes from α-cyclodextrin and poly(ethylene glycol). Macromolecules 38:7524–7527

    CAS  Google Scholar 

  12. Oya T, Noguchi M, Yui N (2003) Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J Am Chem Soc 125:13016–13017

    Google Scholar 

  13. Oya T et al (2005) Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjugate Chem 16:62–69

    Google Scholar 

  14. Fleury G et al (2005) Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded alpha-cyclodextrins. Soft Matter 1:378–385

    CAS  Google Scholar 

  15. Kataoka T et al (2006) Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated α-cyclodextrins. J Phys Chem B 110:24377–243823

    CAS  Google Scholar 

  16. Sakai T et al (2007) Photoresponsive ring-slide gels. Adv Mater 19:2023–2025

    CAS  Google Scholar 

  17. Kidowaki M et al (2007) Novel liquid crystalline polyrotaxane with movable mesogenic side chains. Macromolecules 40:6859–6862

    CAS  Google Scholar 

  18. Inomata A et al (2011) Orientational motions in mesogenic polyrotaxane and local mode relaxations of polymer segments in solid state polyrotaxane. Soft Matter 7:922–928

    CAS  Google Scholar 

  19. Araki J, Kataoka T, Ito K (2008) Preparation of a “sliding graft copolymer”, an organic solvent-soluble polyrotaxane containing mobile side chains, and its application for a crosslinked elastomeric supramolecular film. Soft Matter 4:245–249

    Google Scholar 

  20. Araki J, Ito K (2007) Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 3:1456–1473

    CAS  Google Scholar 

  21. Kato K, Komatsu K, Ito K (2010) A versatile synthesis of various cyclodextrin-based polyrotaxanes requiring no capping regents. Macromolecules 43:8799–8804

    CAS  Google Scholar 

  22. Yu H et al (2006) Novel triblock copolymers synthesized via radical telomerization of N-isopropylacrylamide in the presence of polypseudorotaxanes made from thiolated PEG and alpha-CDs. Polymer 47:6066–6071

    CAS  Google Scholar 

  23. Mayumi K, Ito K (2010) Structure and dynamics of polyrotaxane and slide-ring materials. Polymer 51:959–967

    CAS  Google Scholar 

  24. Karino T et al (2005) SANS studies on deformation mechanism of slide-ring gel. Macromolecules 38:6161–6167

    CAS  Google Scholar 

  25. Shinohara Y et al (2006) Small-angle X-ray scattering study of the pulley effect of slide-ring gels. Macromolecules 39:7386–7391

    CAS  Google Scholar 

  26. Bitoh Y et al (2011) Peculiar nonlinear elasticity of polyrotaxane gels with movable cross-links revealed by multiaxial stretching. Macromolecules 44:8661–8667

    CAS  Google Scholar 

  27. Kato K, Ito K (2011) Dynamic transition between rubber and sliding state attributed to slidable cross-links. Soft Matter 7:8737–8740

    CAS  Google Scholar 

  28. Mayumi K et al (2012) Mechanics of slide-ring gels: novel entropic elasticity of topological network formed by ring and string. Soft Matter 8:8179–8183

    CAS  Google Scholar 

  29. Sevick EM, Williams DRM (2010) Piston-rotaxanes as molecular shock absorbers. Langmuir 26:5864–5868

    CAS  Google Scholar 

  30. Konda A et al (2012) Influence of structural characteristics on stretching-driven swelling of polyrotaxane gels with movable cross links. Macromolecules 45:6733–6740

    CAS  Google Scholar 

  31. Katsuno C et al (2013) Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv Mater 25:4636–4640

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohzo Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ito, K. (2015). Topological Gels. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_55

Download citation

Publish with us

Policies and ethics